精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若对于任意x∈R,f(x)>0恒成立,试确定负实数a的取值范围;
(2)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.

分析 (1)求出f(x)的导函数,分a大于0,a=0和a小于0三种情况考虑,当a大于0时,导函数大于0,即函数为增函数,利用极限的思想得到函数恒大于0不成立;当a=0时,得到函数恒大于0,满足题意;当a小于0时,令导函数等于0,求出x的值,由x的值分区间讨论导函数的正负,得到函数的单调区间,进而得到f(x)的最小值,让最小值大于0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,综上,得到满足题意的a的取值范围;
(2)把a=-1代入到(2)中求出的f(x)的最小值中,确定出f(x)的最小值,设h(x)=g(x)-f(x),把g(x)和f(x)的解析式代入确定出h(x),求出h(x)的导函数,假如存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等,令h(x)导函数等于f(x)的最小值,得到lnx+$\frac{1}{x}$-1=0,设φ(x)等于等式的右边,求出φ(x)的导函数,利用导函数的正负确定出φ(x)的最小值为φ(1)等于0,得到方程有唯一的解,且唯一的解为f(x)的最小值.

解答 解:(1)f′(x)=ex+a,
①当a>0时,f′(x)>0,f(x)在R上单调递增,且当x→-∞时,ex→0,ax→-∞,
∴f(x)→-∞,故f(x)>0不恒成立,所以a>0不合题意;
②当a=0时,f(x)=ex>0对x∈R恒成立,所以a=0符合题意;
③当a<0时令f′(x)=ex+a=0,得x=ln(-a),
当x∈(-∞,ln(-a))时,f′(x)<0,当x∈(ln(-a),+∞)时,f′(x)>0,
故f(x)在(-∞,ln(-a))上是单调递减,在(ln(-a),+∞)上是单调递增,
所以[f(x)]min=f(ln(-a))=-a+aln(-a)>0,
解得a>-e,又a<0,∴a∈(-e,0),
综上:a∈(-e,0].
(2)当a=-1时,由(2)知[f(x)]min=f(ln(-a))=-a+aln(-a)=1,
设h(x)=g(x)-f(x)=exlnx-ex+x,则h′(x)=exlnx+ex•$\frac{1}{x}$-ex+1=ex(lnx+$\frac{1}{x}$-1)+1,
假设存在实数x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等,
x0即为方程的解,
令h′(x)=1得:ex(lnx+$\frac{1}{x}$-1)=0,因为ex>0,所以lnx+$\frac{1}{x}$-1=0.
令φ(x)=lnx+$\frac{1}{x}$-1,则φ′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
当0<x<1时φ′(x)<0,当x>1时φ′(x)>0,
所以φ(x)=lnx+$\frac{1}{x}$-1在(0,1)上单调递减,在(1,+∞)上单调递增,
∴φ(x)>φ(1)=0,故方程ex(lnx+$\frac{1}{x}$-1)=0有唯一解为1,
所以存在符合条件的x0,且仅有一个x0=1.

点评 此题考查学生会会利用导函数的正负确定函数的单调区间,会利用导数研究函数的极值,掌握导数在最大值、最小值问题中的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为(  )
A.$\frac{\sqrt{2}π}{3}$B.$\frac{\sqrt{3}π}{3}$C.$\frac{\sqrt{3}π}{2}$D.$\frac{2\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从某校高三的学生中随机抽取了100名学生,统计了某次数学模考考试成绩如表:
分组频数频率
[100,110)50.050
[110,120)0.200
[120,130)35
[130,140)300.300
[140,150]100.100
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出
这些数据的频率分布直方图,再根据频率分布直方图估计这100名学生的平均成绩;
(2)从这100名学生中,采用分层抽样的方法已抽取了20名同学参加“希望杯数学竞赛”,现需要选取其中3名同学代表高三年级到外校交流,记这3名学生中“期中考试成绩低于120分”的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,若z1=2+i,z2=1-i,则$z=\frac{z_1}{z_2}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若奇函数y=f(x)在区间(0,+∞)上是增函数,又f(-3)=0,则不等式f(x)<0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(0,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=-3,且α是第二象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若tanα=3,tan(α+β)=2,则tanβ=(  )
A.$-\frac{1}{7}$B.$-\frac{1}{6}$C.$-\frac{5}{7}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是(  )
A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人
C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a≥2,f(x)=x3+3|x-a|,若函数f(x)在[-1,1]上的最大值和最小值分别记为M,m,则M-m的值为(  )
A.8B.-a3-3a+4C.4D.-a3+3a+2

查看答案和解析>>

同步练习册答案