精英家教网 > 高中数学 > 题目详情
6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是(  )
A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人
C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人

分析 “甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人

解答 解:“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.
故选C.

点评 本题考查了推理与证明,认真分析条件中的逻辑关系,逐步推出结论.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若复数z满足$\frac{z+2i}{z}$=2+3i,其中i是虚数单位,则$\overline z$=(  )
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若对于任意x∈R,f(x)>0恒成立,试确定负实数a的取值范围;
(2)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点N(x,y)为圆x2+y2=1上任意一点,则$\frac{y}{x+2}$的取值范围(  )
A.[$-\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.[-$\sqrt{3}$,$\sqrt{3}$]C.(-∞,$-\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的可导函数f(x)的导函数为f′(x),若对于任意实数x,有f(x)>f′(x),且f(0)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第Ⅰ营区,从201到500住在第Ⅱ营区,从501到600住在第Ⅲ营区,三个营区被抽中的人数依次为(  )
A.16,26,8B.17,24,9C.16,25,9D.17,25,8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(cos5°,sin5°),$\vec b=({cos65°,sin65°})$,则$|{\vec a+2\vec b}|$=(  )
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,数列$\sqrt{{S_n}+1}$是公比为2的等比数列.求证:数列{an}成等比数列的充要条件是a1=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=2-i,则复数$z•\overline z$的值为(  )
A.3B.5C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案