精英家教网 > 高中数学 > 题目详情
13.抛物线x2=4y的准线方程是(  )
A.y=-1B.y=-2C.x=-1D.x=-2

分析 由x2=2py(p>0)的准线方程为y=-$\frac{p}{2}$,则抛物线x2=4y的准线方程即可得到.

解答 解:由x2=2py(p>0)的准线方程为y=-$\frac{p}{2}$,
则抛物线x2=4y的准线方程是y=-1,
故选A.

点评 本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,设点D到定直线AB的距离DE=a(a>0),过点D与直线AB相切的动圆圆心为C.
(1)试判定动点C的轨迹,
(2)已知过点D的直线l交动点C的轨迹于两点P,Q,且$\overrightarrow{DP}•\overrightarrow{DQ}$的最大值等于-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ln(1+x)-$\frac{ax}{x+1}$
(1)当a>0时,讨论函数f(x)在区间(0,+∞)上的单调性;
(2)若x≥0时有f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F是抛物线y=$\frac{1}{4}$x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是(  )
A.x2=2y-1B.x2=2y-$\frac{1}{16}$C.x2=y-$\frac{1}{2}$D.x2=2y-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点P作PM垂直l于M,若∠PFM=60°,则△PFM的面积为(  )
A.p2B.$\sqrt{3}$p2C.2p2D.2$\sqrt{3}$p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点在坐标原点,焦点F在y轴上,点A(a,1)在抛物线上,且|FA|=2
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N若抛物线上一点C满足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知M(a,2)是抛物线y2=2x上的一定点,直线MP、MQ的倾斜角之和为π,且分别与抛物线交于P、Q两点,则直线PQ的斜率为(  )
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,若对任意非零实数x1,存在非零实数x2(x1≠x2),使得f(x2)=f(x1),则实数k的最小值(  )
A.$\frac{15}{2}$B.$-\frac{15}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(  )
A.该几何体体积为$\frac{5}{6}$B.该几何体体积可能为$\frac{2}{3}$
C.该几何体表面积应为$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$D.该几何体唯一

查看答案和解析>>

同步练习册答案