分析 先求出1-a2>0,将b2=1-2a2代入代数式a$\sqrt{1+b{\;}^{2}}$得到$\sqrt{2}$•$\sqrt{{a}^{2}(1{-a}^{2})}$,利用基本不等式的性质,从而求出最大值.
解答 解:∵b2=1-2a2≥0,a>0,
∴1-a2>0,
∴a$\sqrt{1{+b}^{2}}$
=$\sqrt{{a}^{2}(1{+b}^{2})}$
=$\sqrt{{a}^{2}{+a}^{2}(1-{2a}^{2})}$
=$\sqrt{{2a}^{2}(1{-a}^{2})}$
=$\sqrt{2}$•$\sqrt{{a}^{2}(1{-a}^{2})}$
≤$\sqrt{2}$•$\frac{{a}^{2}+1{-a}^{2}}{2}$
=$\frac{\sqrt{2}}{2}$,
当且仅当a2=1-a2时,即a=$\frac{\sqrt{2}}{2}$时,“=”成立.
点评 本题考查了基本不等式性质的应用,将代数式a$\sqrt{1+b{\;}^{2}}$变形为$\sqrt{2}$•$\sqrt{{a}^{2}(1{-a}^{2})}$是解题的关键,本题属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}>\frac{1}{b}$ | B. | log2(a-b)>0 | C. | 2a-b<1 | D. | ${({\frac{1}{3}})^a}<{({\frac{1}{2}})^b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{3\sqrt{2}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com