| A. | ($\frac{e-1}{2}$,+∞) | B. | (-∞,$\frac{e-1}{2}$) | C. | (e+1,+∞) | D. | (-∞,e+1) |
分析 由题意可得2m+1<$\frac{{e}^{x}}{x}$在(0,3)的最小值,求出f(x)=$\frac{{e}^{x}}{x}$的导数和单调区间,可得f(x)的最小值,解不等式即可得到m的范围.
解答 解:当x∈(0,3)时,关于x的不等式ex-x-2mx>0恒成立,
即为2m+1<$\frac{{e}^{x}}{x}$在(0,3)的最小值,
由f(x)=$\frac{{e}^{x}}{x}$的导数为f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
当0<x<1时,f′(x)<0,f(x)递减;
当1<x<3时,f′(x)>0,f(x)递增.
可得f(x)在x=1处取得最小值e,
即有2m+1<e,
可得m<$\frac{e-1}{2}$.
故选:B.
点评 本题考查不等式恒成立问题的解法,注意运用参数分离和构造函数法,运用导数求出单调区间和最值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 某学校有学生1320人,卫生部门为了了解学生身体发育情况,准备从中抽取一个容量为300的样本 | |
| B. | 为了准备省政协会议,某政协委员计划从1135个村庄中抽取50个进行收入调查 | |
| C. | 从全班30名学生中,任意选取5名进行家访 | |
| D. | 为了解某地区癌症的发病情况,从该地区的5000人中抽取200人进行统计 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 废品率每增加 1%,生铁成本增加 259 元 | |
| B. | 废品率每增加 1%,生铁成本增加 3 元 | |
| C. | 废品率每增加 1%,生铁成本平均每吨增加 3 元 | |
| D. | 废品率不变,生铁成本为 256 元 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com