精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足:f'(x)>1-f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式exf(x)>ex+5(其中e为自然对数的底数)的解集为(  )
A、(0,+∞)
B、(-∞,0)∪(3,+∞)
C、(-∞,0)∪(1,+∞)
D、(3,+∞)
考点:导数的运算,其他不等式的解法
专题:导数的概念及应用
分析:构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解
解答: 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+5,
∴g(x)>5,
又∵g(0)=e0f(0)-e0=6-1=5,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故选:A.
点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为y=±
3
x,且过点M(-1,3),则该双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时f(x)是增函数.则实数m=(  )
A、3或-2B、-2
C、3D、-3或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,4},B={a,b,c},f:A→B为集合A到集合B的一个函数,那么该函数的值域C的不同情况有(  )
A、7种B、4种C、8种D、12种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有(  )
A、3个B、4个C、5个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)的图象过点(
3
,3),若函数g(x)=f(x)+1在区间[m,2]上的值域是[1,5],则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(
3
x+φ)(0<φ<π),若函数f(x)-f′(x)是奇函数,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:
52x-23•5x-50=0;
lg
5x+5
=1-
1
2
lg(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边长分别为a,b,c,
m
=(cosA,cosC),
n
=(
3
c-2b,
3
a),且
m
n

(1)求角A的大小;
(2)若a=b,且BC边上的中线AM的长为
7
,求边a的值.

查看答案和解析>>

同步练习册答案