精英家教网 > 高中数学 > 题目详情
17.已知a,b∈R,函数f(x)=ax-b,若对任意x∈[-1,1],有0≤f(x)≤1,则$\frac{3a+b+1}{a+2b-2}$的取值范围为(  )
A.[-$\frac{1}{2}$,0]B.[-$\frac{4}{5}$,0]C.[-$\frac{1}{2}$,$\frac{2}{7}$]D.[-$\frac{4}{5}$,$\frac{2}{7}$]

分析 根据不等式成立转化为$\left\{\begin{array}{l}{0≤f(1)≤1}\\{0≤f(-1)≤1}\end{array}\right.$,设$\frac{3a+b+1}{a+2b-2}$=λ,转化为直线方程,求出直线过定点D(-$\frac{4}{5}$,$\frac{7}{5}$),结合直线向量公式进行化简,利用数形结合进行求解即可得到结论.

解答 解:∵f(x)=ax-b,若对任意x∈[-1,1],有0≤f(x)≤1,
∴$\left\{\begin{array}{l}{0≤f(1)≤1}\\{0≤f(-1)≤1}\end{array}\right.$,即$\left\{\begin{array}{l}{0≤a-b≤1}\\{0≤-a-b≤1}\end{array}\right.$,
设$\frac{3a+b+1}{a+2b-2}$=λ,即3a+b+1=λ(a+2b-2),
即l:3a+b+1-λ(a+2b-2)=0,
则(1-2λ)b+(3-λ)a+1+2λ=0,
得b=$\frac{λ-3}{1-2λ}$a-$\frac{λ+2}{1-2λ}$,直线斜率k=$\frac{λ-3}{1-2λ}$
则由$\left\{\begin{array}{l}{3a+b+1=0}\\{a+2b-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=-\frac{4}{5}}\\{b=\frac{7}{5}}\end{array}\right.$,即直线过定点D(-$\frac{4}{5}$,$\frac{7}{5}$),
作出不等式组对应的平面区域如图:
则DA的斜率最小,DC的斜率最大,
由$\left\{\begin{array}{l}{b-a=0}\\{-a-b=1}\end{array}\right.$,得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$,即A(-$\frac{1}{2}$,-$\frac{1}{2}$)
由$\left\{\begin{array}{l}{a-b=1}\\{-a-b=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$,即C($\frac{1}{2}$,-$\frac{1}{2}$),
则kDA=$\frac{-\frac{1}{2}-\frac{7}{5}}{-\frac{1}{2}+\frac{4}{5}}$=-$\frac{19}{3}$,kDC=$\frac{-\frac{1}{2}-\frac{7}{5}}{\frac{1}{2}+\frac{4}{5}}$=-$\frac{19}{13}$,
则-$\frac{19}{3}$≤$\frac{λ-3}{1-2λ}$≤-$\frac{19}{13}$,即$\frac{19}{3}$≤$\frac{λ-3}{2λ-1}$≤$\frac{19}{13}$,
即$\frac{13}{19}$≤$\frac{2λ-1}{λ-3}$≤$\frac{3}{19}$,即$\frac{13}{19}$≤$\frac{2(λ-3)+5}{λ-3}$≤$\frac{3}{19}$,
即$\frac{13}{19}$≤2+$\frac{5}{λ-3}$≤$\frac{3}{19}$,$-\frac{35}{19}$≤$\frac{5}{λ-3}$≤=$\frac{25}{19}$,
-$\frac{7}{16}$≤$\frac{1}{λ-3}$≤-$\frac{5}{19}$,
即-$\frac{19}{5}$≤λ-3≤-$\frac{19}{7}$,
得-$\frac{4}{5}$≤λ≤$\frac{2}{7}$,
故选:D

点评 本题主要考查线性规划的应用,根据不等式恒成立进行转化,求出直线的定点坐标,求出直线的斜率,利用数形结合是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知tanα=2(α∈(0,π)),则cos($\frac{π}{2}+2α$)等于(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两圆x2+y2+2ax+2ay+2a2-1=0与x2+y2+2bx+2by+2b2-2=0的公共弦长的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点(1,-2,3)关于x轴的对称点坐标为(  )
A.(1,2,-3)B.(-1,-2,3)C.(-1,2,-3)D.(-1,2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<4;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线$f(x)=\frac{xlnx}{e^x}$在点(1,f(1))处的切线方程为x-ey-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,已知第1项到第10项的和为9,第11项到第20项的和为36,则前40项的和为360.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.每一个音都是纯音合成的,纯音的数字模型是函数y=Asinωt.音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到声音是由许多音的结合,称为复合音.若一个复合音的函数是y=$\frac{1}{4}$sin4x+$\frac{1}{6}$sin6x,则该复合音的周期为(  )
A.$\frac{3π}{2}$B.πC.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案