精英家教网 > 高中数学 > 题目详情
8.两圆x2+y2+2ax+2ay+2a2-1=0与x2+y2+2bx+2by+2b2-2=0的公共弦长的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

分析 将两圆分别化成标准方程,得到它们的半径,数形结合可得公共弦长恰好为小圆的直径时,公共弦长达到最大值.

解答 解:圆x2+y2+2ax+2ay+2a2-1=0化成标准形式,得(x+a)2+(y+a)2=1,
∴该圆表示以M(-a,-a)为圆心,半径为1的圆;
同理圆x2+y2+2bx+2by+2b2-2=0表示以N(-b,-b)为圆心,半径为$\sqrt{2}$的圆.
∴两圆相交于A、B两点,当线段AB恰好为圆M的直径时,
公共弦长达到最大值,即得两圆公共弦长的最大值为圆M的直径2.
故选:B.

点评 本题考查圆与圆的位置关系,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.将函数y=sin(2x-$\frac{π}{6}$)的图象向右平移$\frac{5π}{12}$个单位,得到g(x)的图象,则g(x)=(  )
A.-sin2xB.sin2xC.-cos2xD.cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,y),B(x,-10),C(3,-4),若C是线段AB的中点,求x和y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=x3B.y=ln|x|C.y=-x2D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x) 为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中正确的是②③.(写出所有正确的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\sqrt{9-{x}^{2}}$,x∈[-3,3]的值域为(  )
A.(-∞,3]B.[3,+∞)C.[0,3]D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正四面体A1A2A3A4,点A5,A6,A7,A8,A9,A10分别是所在棱的中点,如图,则当1≤i≤10,1≤j≤10,且i≠j时,数量积$\overrightarrow{{A}_{1}{A}_{2}}•\overrightarrow{{A}_{i}{A}_{j}}$的不同数值的个数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R,函数f(x)=ax-b,若对任意x∈[-1,1],有0≤f(x)≤1,则$\frac{3a+b+1}{a+2b-2}$的取值范围为(  )
A.[-$\frac{1}{2}$,0]B.[-$\frac{4}{5}$,0]C.[-$\frac{1}{2}$,$\frac{2}{7}$]D.[-$\frac{4}{5}$,$\frac{2}{7}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b均为正数,且a+b=1,求$\sqrt{a+1}$+$\sqrt{b+1}$的最大值.

查看答案和解析>>

同步练习册答案