精英家教网 > 高中数学 > 题目详情
3.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x) 为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中正确的是②③.(写出所有正确的编号)

分析 在①中,举出反例得到函数f(x)=x2(x∈R)不是单函数;在②中,由互为逆否命题的两个命题等价判断正误;在③中,符合唯一的函数值对应唯一的自变量;在④中,在某一区间单调并不一定在定义域内单调.

解答 解:在①中,函数f(x)=x2(x∈R),由f(-1)=f(1),但-1≠1,
得到函数f(x)=x2(x∈R)不是单函数,故①错误;
在②中,“x1,x2∈A且x1≠x2,则f(x1)≠f(x2)”的逆否命题是“若x1,x2∈A且f(x1)=f(x2)时总有x1=x2”.
互为逆否命题的两个命题等价.故②的逆否命题为真,故②正确;
在③中,符合唯一的函数值对应唯一的自变量,
∴若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应,故③正确;
在④中,在某一区间单调并不一定在定义域内单调,∴f(x)不一定是单函数,故④错误.
故答案为:②③.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知公差不为零的等差数列{an}的首项为2,前n项和为Sn,且数列{$\frac{{S}_{n}}{{a}_{n}}$}是等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知θ∈(0°,360°),sinθ,cosθ是方程x2-mx+m+1=0的两个根,求角θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$y={log_{\frac{1}{3}}}(-3+4x-{x^2})$的单调递增区间是[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆的方程为x2+y2-2x+6y+8=0,那么通过圆心的一条直线方程是(  )
A.2x-y-1=0B.2x+y+1=0C.2x-y+1=0D.2x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两圆x2+y2+2ax+2ay+2a2-1=0与x2+y2+2bx+2by+2b2-2=0的公共弦长的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|3≤3x≤27},B={x|x>2},全集U=R.
(1)求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.曲线y=-5ex+3在点x=0处的切线方程为y=-5x-2.

查看答案和解析>>

同步练习册答案