精英家教网 > 高中数学 > 题目详情
20.若单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$满足$|2\overrightarrow{e_1}+\overrightarrow{e_2}|=|\overrightarrow{e_1}|$,则$\overrightarrow{e_1}$在$\overrightarrow{e_2}$方向上投影为-1.

分析 对$|2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}|=|\overrightarrow{{e}_{1}}|$两边平方,并进行数量积的运算即可求出$cos<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>$的值,从而可求出$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的投影.

解答 解:∵$|2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}|=|\overrightarrow{{e}_{1}}|$;
∴$(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})^{2}={\overrightarrow{{e}_{1}}}^{2}$;
即$4{\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}={\overrightarrow{{e}_{1}}}^{2}$;
∴$4+4cos<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>+1=1$;
∴$cos<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>=-1$;
∴$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的投影为$|\overrightarrow{{e}_{1}}|cos<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>=-1$.
故答案为:-1.

点评 考查单位向量的概念,向量数量积的运算及计算公式,向量投影的定义及计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如表是某位文科生连续5次月考的历史、政治的成绩,结果如下:
月份91011121
历史(x 分)7981838587
政治(y 分)7779798283
(Ⅰ)求该生5次月考历史成绩的平均分和政治成绩的方差;
(Ⅱ)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数f(x)的图象向右平移$\frac{π}{6}$个所得图象对应的函数为y=g(x),则关于函数为y=g(x)的性质,下列说法不正确的是(  )
A.g(x)为奇函数B.关于直线$x=\frac{π}{2}$对称
C.关于点(π,0)对称D.在$(-\frac{π}{6},\frac{π}{4})$上递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,离心率为$\frac{{2\sqrt{5}}}{5}$,抛物线G:y2=2px(p>0)的焦点F与椭圆E的右焦点重合,若斜率为k的直线l过抛物线G的焦点F与椭圆E相交于A,B两点,与抛物线G相交于C,D两点.
(Ⅰ)求椭圆E及抛物线G的方程;
(Ⅱ)是否存在实数λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$为常数?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等腰三角形ABC中,底边BC=3,∠BAC=120°,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若P是BC边上的中点,则$\overrightarrow{AP}$•$\overrightarrow{AD}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且pq∈N*,)是正整数n的最佳分解时,我们定义函数f(n)=q-p,例如f(12)=4-3=1.数列{f(3n)}的前100项和为350-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知m∈R,命题p:对任意实数x,不等式x2-2x-1≥m2-3m恒成立,若¬p为真命题,则m的取值范围是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读下边的程序框图,运行相应的程序,若输出S的值为16,则输入m的值可以为(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线y=ax是曲线y=lnx的切线,则实数a=(  )
A.$\frac{1}{2}$B.$\frac{1}{2e}$C.$\frac{1}{e}$D.$\frac{1}{{e}^{2}}$

查看答案和解析>>

同步练习册答案