精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,∠ACB=90°,AA1=AC=BC=2,D为AB中点.
(Ⅰ)求证:AB1⊥A1C;
(Ⅱ)求证:BC1∥平面A1CD;
(Ⅲ)求直线AA1与平面A1CD所成角的正弦值.
考点:直线与平面平行的判定,直线与平面所成的角
专题:计算题,证明题,空间位置关系与距离,空间角
分析:(Ⅰ)由线面垂直的判定和性质,即可得证;(Ⅱ)连接A1C,交A1C于O点,由中位线定理得到DO∥BC1,再由线面平行的判定定理即可得证;(Ⅲ)过A作AH⊥A1D交A1D于H,通过线面垂直的判定和性质,和面面垂直的判定和性质即可得到AH⊥平面A1CD,故∠AA1D为直线AA1与平面A1CD所成的角,在△AA1D中,求出sin∠AA1D即可.
解答: (Ⅰ)证明:∵在三棱柱ABC-A1B1C1中,
A1A⊥平面ABC,∠ACB=90°,
∴B1C1⊥平面A1ACC1
又∵A1C?平面A1ACC1
∴A1C⊥B1C1
连接AC1,有AC1⊥A1C,
∴A1C⊥平面AB1C1
∴AB1⊥A1C;
(Ⅱ)证明:连接A1C,交A1C于O点,
则DO为△ABC1的中位线,
∴DO∥BC1
又DO?平面A1CD,BC1?平面A1CD,
∴BC1∥平面A1CD;
(Ⅲ)解:过A作AH⊥A1D交A1D于H,
∵AC=BC,D为AB的中点,∴CD⊥AB,
∵A1A⊥平面ABC,∴A1A⊥CD,又A1A∩AB=A,
∴CD⊥平面A1AD,
∴平面A1AD⊥平面A1CD,
∴AH⊥平面A1CD,∴∠AA1D为直线AA1与平面A1CD所成的角,
∴在△AA1D中,AA1=2,AD=
2
,∴A1D=
6
,∴sin∠AA1D=
3
3

故直线AA1与平面A1CD所成的角的正弦为
3
3
点评:本题主要考查空间直线与平面的位置关系,考查线面平行的判定,线面垂直的判定和性质,面面垂直的判定和性质,以及直线与平面所成的角的求法,熟记这些概念和判定和性质是迅速解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:
分组 频数 频率
[40,50) 2 0.04
[50,60) 3 0.06
[60,70) 14 0.28
[70,80) 15 0.30
[80,90) A B
[90,100] 4 0.08
合计 C D

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:直三棱柱ABC-DEF中,AB=
2
,BC=1,BE=2,AB⊥平面BCFE,M是CF的中点.
(1)证明:AM⊥ME.
(2)求二面角A-ME-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,离心率e=
2
2
,过F1F2分别作直线l1,l2且l1⊥l2,l1,l2分别交直线l:x=
2
a于M,N两点.
(Ⅰ)若|
F1M
|=|
F2N
|=2
5
,求椭圆的方程;
(Ⅱ)当|
MN
|取最小值时,试探究|
F1M
|+|
F2N
|与
F1F2
的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
36
+
y2
16
=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|
PF1
|>|
PF2
|.
(1)求|PF1|的长度;
(2)求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BC′D,使得平面BC′D⊥平面ABD.
(Ⅰ)求证:C′D⊥平面ABD;
(Ⅱ)求直线BD与平面BEC′所成角的正弦值;
(Ⅲ)求二面角D-BE-C′的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若csinC-asinA=b(sinB-sinA),c=2.
(Ⅰ)若△ABC的面积为
2
3
3
,求a,b的值;
(Ⅱ)设△ABC的周长为y,试求函数y=f(A)的定义域和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

cot15°-tan15°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-10x+9=0的两个根,则S4=
 

查看答案和解析>>

同步练习册答案