精英家教网 > 高中数学 > 题目详情

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:

日期

121

122

123

124

125

温差摄氏度

10

11

13

12

8

发芽

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.

(1)若选取的3组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望:

(2)根据122日至4日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?

附:参考公式:

【答案】(1)见解析(2)见解析

【解析】

1的可能取值有,用古典概型概率计算公式,计算出分布列,并求出数学期望.2)利用回归直线方程计算公式计算出回归直线方程,并判断出回归直线方程是否可靠.

解:(1)由题意知,

, ,

∴;

的分布列为:

0

2

3

数学期望为

(2)由题意,计算

所以

关于的线性回归方程为

时,,且

时,,且

∴所求得线性回归方程是可靠的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的单调区间;

2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占,而抽取的女生中有15人表示对游泳没有兴趣.

(1)试完成下面的列联表,并判断能否有的把握认为“对游泳是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

男生

女生

合计

(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.

(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级比赛

获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上比赛获奖人数

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知以下说法正确的是 _____.(填序号)

①甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;

③甲、乙两名运动员的成绩没有明显的差异;④甲运动员的最低得分为0分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线处的切线斜率为0

求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,在上存在两点满足,且点轴上方,以为切点作的切线与该抛物线的准线相交于,则的坐标为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,底面的中点.

(1)求证:

(2)若二面角的大小为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为.

1)求;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个同样大小的球,,,两两相切,点是球上的动点,则直线与直线所成角的余弦值的取值范围为(

A.B.C.D.

查看答案和解析>>

同步练习册答案