| A. | [-1,1] | B. | $[{-\sqrt{2},1}]$ | C. | $[{-1,\sqrt{2}}]$ | D. | $[{-\sqrt{2},\sqrt{2}}]$ |
分析 画出两函数图象,抓住两个关键点,一是直线过点A;一是直线与圆相切,求出相应b的值,即可确定出两集合不为空集时b的范围.
解答
解:集合M表示圆心为原点,半径为1的上半圆,集合N表示直线y=x+b,如图所示,
当直线y=x+b过A点时,把A(1,0)代入得:b=-1;
当直线y=x+b与圆相切,且切点在第二象限时,
圆心到直线的距离d=r,即$\frac{|b|}{\sqrt{2}}$=1,即b=$\sqrt{2}$(负值舍去),
则M∩N≠∅时,实数b的范围是[-1,$\sqrt{2}$].
故选:C.
点评 此题考查了交集及其运算,利用了数形结合的思想,抓住两个关键点是解本题的关键.
科目:高中数学 来源: 题型:解答题
| 投资结果 | 获利40% | 不赔不赚 | 亏损20% |
| 概 率 | $\frac{1}{2}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
| 投资结果 | 获利20% | 不赔不赚 | 亏损10% |
| 概 率 | p | $\frac{1}{3}$ | q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{5}$,1) | B. | [-$\sqrt{5}$,1) | C. | [-2,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com