分析 (1)利用递推关系即可得出;
(2)由$\frac{{2}^{{b}_{n+1}}}{{2}^{{b}_{n}}}$=an+1,可得:bn+1-bn=n.利用“累加求和”与“裂项求和”即可得出.
解答 解:(1)∵a1=1,Sn=2n-1.
∴当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1.当n=1时也成立.
∴an=2n.
(2)∵$\frac{{2}^{{b}_{n+1}}}{{2}^{{b}_{n}}}$=an+1,
∴${2}^{{b}_{n+1}-{b}_{n}}$=2n,
∴bn+1-bn=n.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+(n-2)+…+1+1
=$\frac{n(n-1)}{2}$+1.
∴$\frac{1}{{b}_{n}+n-1}$=$\frac{1}{\frac{n(n-1)}{2}+1+n-1}$=$2(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{$\frac{1}{{b}_{n}+n-1}$}的前n项和Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
点评 本题考查了“累加求和”与“裂项求和”、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | A,B,C三点共线 | B. | A,B,D三点共线 | C. | A,C,D三点共线 | D. | B,C,D三点共线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分必要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 23 | B. | 24 | C. | 26 | D. | 28 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a?平面a,b?平面β且α∩β=∅ | B. | a?平面α,b?平面α | ||
| C. | a?平面α,b?平面β | D. | a∩b=∅且a不平行于b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com