【题目】数学中有许多形状优美寓意美好的曲线,曲线
就是其中之一(如图).给出下列三个结论:
![]()
①曲线
恰好经过6个整点(即横纵坐标均为整数的点);
②曲线
上存在到原点的距离超过
的点;
③曲线
所围成的“心形”区域的面积小于3.
其中,所有错误结论的序号是______.
【答案】②③
【解析】
将
换成
方程不变,得到图形关于
轴对称,根据对称性,分类讨论,逐一判定,即可求解.
将
换成
方程不变,所以图形关于
轴对称,
当
时,代入可得
,解得
,即曲线经过点
,
当
时,方程变换为
,
由
,解得
,
所以
只能去整数
,当
时,
,解得
或
,即曲线经过
,
根据对称性可得曲线还经过
,
所以曲线一共经过6个整点,所以①是正确的;
当
时,由
,可得
,当且仅当
时取等号,
所以
,所以
,
即曲线C上
轴右边的点到原点的距离不超过
,
根据对称性可得:曲线C上任意一点到原点的距离都不超过
,所以②不正确;
如图所示,在
轴上图形的面积大于矩形
的面积:
,
轴下方的面积大于等腰三角形
的面积:
,所以曲线C所围成的“心形”区域的面积大于
,所以③不正确的.
故选:②③.
![]()
科目:高中数学 来源: 题型:
【题目】已知
为椭圆
上的一点,F为椭圆的右焦点,且
垂直于x轴,不过原点O的直线
交椭圆于A,B两点,线段
的中点M在直线
上.
(1)求椭圆C的标准方程;
(2)当
的面积最大时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为![]()
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某饮料厂生产
两种饮料.生产1桶
饮料,需该特产原料100公斤,需时间3小时;生产1桶
饮料需该特产原料100公斤,需时间1小时,每天
饮料的产量不超过
饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产
饮料的时间不低于生产
饮料的时间,每桶
饮料的利润是每桶
饮料利润的1.5倍,若该饮料厂每天生产
饮料
桶,
饮料
桶时(
)利润最大,则
_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=0,
(n∈N*),前n项和为Sn (参考数据: ln2≈0.693,ln3≈1.099),则下列选项中错误的是( )
A.
是单调递增数列,
是单调递减数列B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥
的底面边长为
高为
其内切球与面
切于点
,球面上与
距离最近的点记为
,若平面
过点
,
且与
平行,则平面
截该正四棱锥所得截面的面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,线段
上有两个动点
,且
,现有如下四个结论:
;
平面
;
三棱锥
的体积为定值;
异面直线
所成的角为定值,
其中正确结论的序号是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
ABCD中,
和
都是等边三角形,平面PAD
平面ABCD,且
,
.
![]()
(1)求证:CD
PA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com