19£®ÔÚÌÝÐÎABCDÖУ¬AB¡ÎDC£¬AB¡ÍAD£¬AD=DC=1£¬AB=2£¬Èô$\overrightarrow{AP}$=$\frac{1}{6}\overrightarrow{AD}$$+\frac{5}{6}\overrightarrow{AB}$£¬Ôò|$\overrightarrow{BC}$+t$\overrightarrow{PB}$|£¨t¡ÊR£©µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{\sqrt{5}}{5}$£¬+¡Þ£©B£®[$\sqrt{2}$£¬+¡Þ£©C£®[$\frac{\sqrt{5}}{5}$£¬1]D£®[1£¬+¡Þ£©

·ÖÎö ÏȽ¨Á¢×ø±êϵ£¬Çó³öµãPµÄ×ø±ê£¬¸ù¾ÝÏòÁ¿µÄÄ£µÄ¼ÆËãµÃµ½|$\overrightarrow{BC}$+t$\overrightarrow{PB}$|2=$\frac{5}{36}$t2-t+2£¬¹¹Ô캯Êýf£¨t£©=$\frac{5}{36}$t2-t+2£¬Çó³öº¯Êý×îÖµ¼´¿É£®

½â´ð ½â£ºÒÔAµãΪԭµã£¬ÒÔÖ±ÏßABΪxÖᣬֱÏßADΪyÖᣬ½¨Á¢ÈçͼËùʾµÄÖ±½Ç×ø±êϵ£¬
ÔòA£¨0£¬0£©£¬B£¨2£¬0£©£¬D£¨0£¬1£©£¬C£¨1£¬1£©
¡à$\overrightarrow{AD}$=£¨0£¬1£©£¬$\overrightarrow{AB}$=£¨2£¬0£©£¬$\overrightarrow{BC}$=£¨-1£¬1£©
ÉèPµã×ø±êΪ£¨x£¬y£©£¬
Ôò$\overrightarrow{AP}$=£¨x£¬y£©£¬
¡ß$\overrightarrow{AP}$=$\frac{1}{6}\overrightarrow{AD}$$+\frac{5}{6}\overrightarrow{AB}$£¬
¡à£¨x£¬y£©=$\frac{1}{6}$£¨0£¬1£©+$\frac{5}{6}$£¨2£¬0£©=£¨$\frac{5}{3}$£¬$\frac{1}{6}$£©£¬
¡à$\overrightarrow{PB}$=£¨$\frac{1}{3}$£¬-$\frac{1}{6}$£©£¬
¡à$\overrightarrow{BC}$+t$\overrightarrow{PB}$=£¨$\frac{t}{3}$-1£¬1-$\frac{t}{6}$£©£¬
¡à|$\overrightarrow{BC}$+t$\overrightarrow{PB}$|2=£¨$\frac{t}{3}$-1£©2+£¨1-$\frac{t}{6}$£©2=$\frac{5}{36}$t2-t+2£¬
Éèf£¨t£©=$\frac{5}{36}$t2-t+2£¬Ôò¶Ô³ÆÖáΪt=$\frac{18}{5}$£¬
µ±t=$\frac{18}{5}$ʱ£¬f£¨t£©min=f£¨$\frac{18}{5}$£©=$\frac{1}{5}$£¬
¡à|$\overrightarrow{BC}$+t$\overrightarrow{PB}$|£¨t¡ÊR£©µÄȡֵ·¶Î§ÊÇΪ[$\frac{\sqrt{5}}{5}$£¬+¡Þ£©
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄ×ø±êÔËËãÒÔ¼°¶þ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚ¡÷ABCÖУ¬ÒÑÖªÏÂÁÐÌõ¼þ£¬½âÈý½ÇÐΣ¨½Ç¶È¾«È·µ½0.1¡ã£¬±ß³¤¾«È·µ½0.1cm£©
£¨1£©a=7cm£¬b=10cm£¬c=6cm
£¨2£©a=9.4cm£¬b=15.9cm£¬c=21.1cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÏÂÁÐÃüÌ⣺¢Ù|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|£»¢Ú$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$£¨$\overrightarrow{a}$¡Ù0£©£¬Ôò$\overrightarrow{b}$=$\overrightarrow{c}$£»¢Û£¨$\overrightarrow{a}•\overrightarrow{b}$£©$•\overrightarrow{c}$=$\overrightarrow{a}•£¨\overrightarrow{b}•\overrightarrow{c}£©$£»¢ÜÈô|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£¬Ôò$\overrightarrow{a}$=$\overrightarrow{b}$»ò$\overrightarrow{a}$=-$\overrightarrow{b}$£®ÆäÖÐÕæÃüÌâµÄ¸öÊý£¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Éèf£¨x£©=x2ln£¨$\frac{2}{1-x}$+a£©ÊÇÆæº¯Êý£¬Ôòa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa12=11£¬a45=110£¬Çó£º
£¨1£©ÊýÁеÄͨÏʽ£»
£¨2£©161ÊDz»ÊÇËüµÄÏÈôÊÇ£¬Êǵڼ¸ÏÈô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèÏòÁ¿$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$Âú×ã|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1£¬·ÇÁãÏòÁ¿$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$£¬x£¾0£¬y£¾0£¬Èôx=2|$\overrightarrow{a}$|£¬Ôò$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$µÄ¼Ð½Ç¦ÈµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{3}$B£®$\frac{¦Ð}{6}$C£®$\frac{5¦Ð}{6}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÔÚ×ø±êÔ­µã£¬×¼Ïß·½³ÌΪx=-1£¬Ö±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£®ÈôÏß¶ÎABµÄÖеãΪ£¨2£¬1£©£¬ÔòÖ±ÏßlµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®y=2x-3B£®y=2x-1C£®y=x-3D£®y=x-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®»¯¼ò¸´Êý$\frac{1+\sqrt{3}i}{1-i}$£¨ÆäÖÐiΪÐéÊýµ¥Î»£©µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®$\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$iB£®$\frac{1-\sqrt{3}}{2}$-$\frac{1+\sqrt{3}}{2}$iC£®$\frac{1+\sqrt{3}}{2}$+$\frac{1-\sqrt{3}}{2}$iD£®$\frac{1+\sqrt{3}}{2}$-$\frac{1-\sqrt{3}}{2}$i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬BÊÇACµÄÖе㣬$\overrightarrow{BE}$=2$\overrightarrow{OB}$£¬PÊǾØÐÎBCDEÄÚ£¨º¬±ß½ç£©µÄÒ»µã£¬ÇÒ$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$£¨x£¬y¡ÊR£©£®Ôòx-yµÄ×î´óֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸