精英家教网 > 高中数学 > 题目详情

已知曲线y1=2-y2x3x2+2xxx0处切线的斜率的乘积为3,则x0的值为(  )

A.-2                                               B.2

C.                                                   D.1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数y的图像大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:


f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.

(1)求a的值及f(x)的定义域.

(2)求f(x)在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:


某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是(  )

A.y=100x                           B.y=50x2-50x+100

C.y=50×2x                                      D.y=100log2x+100

查看答案和解析>>

科目:高中数学 来源: 题型:


某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.

(1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系;

(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:

月用水量x(吨)

3

4

5

6

7

频数

1

3

3

3

2

请你计算该家庭去年支付水费的月平均费用(精确到1元);

(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:

月用水量x(吨)

1

2

3

4

5

6

7

频数

10

20

16

16

15

13

10

据此估计该地“节约用水家庭”的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知f1(x)=sin x+cos x,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn1′(x)(n∈N*n≥2),则=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


函数f(x)=(x-3)ex的单调递增区间是(  )

A.(-∞,2)                                      B.(0,3)

C.(1,4)                                              D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知函数f(x)=x2-1与函数g(x)=aln x(a≠0).

(1)若f(x),g(x)的图像在点(1,0)处有公共的切线,求实数a的值;

(2)设F(x)=f(x)-2g(x),求函数F(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知函数f(x)=2sin ωx(ω>0)在区间上的最小值是-2,则ω的最小值等于(  )

A.                                                            B.

C.2                                                            D.3

查看答案和解析>>

同步练习册答案