| A. | 无解 | B. | 有唯一解 | C. | 有两解 | D. | 不能确定 |
分析 根据正弦定理,结合题中数据解出sinB,再由∠B+∠C=180°-∠A=120°,得出B<120°,所以∠B=30°,从而∠C=90°.由此可得满足条件的△ABC有且只有一个.
解答
解:∵△ABC中,∠A=60°,a=$\sqrt{6}$,b=$\sqrt{2}$,
∴根据正弦定理,得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∵∠A=60°,得∠B+∠C=120°
∴由sinB=$\frac{1}{2}$,得∠B=30°,从而得到∠C=90°
因此,满足条件的△ABC有且只有一个.
故选:B.
点评 本题给出三角形ABC的两条边的一个角,求满足条件的三角形个数.着重考查了利用正弦定理解三角形的知识,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-2,6) | C. | [-2,6] | D. | {-2,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-8,1] | B. | [-8,-3] | C. | R | D. | [-9,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com