精英家教网 > 高中数学 > 题目详情
6.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到的回归直线方程为$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,下列四个命题中正确的个数有(  )
(1)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$必经过点($\overline{x}$,$\overline{y}$)
(2)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点
(3)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,的斜率为$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$
(4)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,和各点(x1,y1),(x2,y2),…,(xn,yn)的偏差$\sum_{i=1}^{n}$[yi-(bxi+a)]2是该坐标平面上所有直线与这些点的偏差中最小的.
A.1个B.2个C.3个D.4个

分析 根据最小二乘法原理和回归系数公式进行判断.

解答 解:由回归系数公式$\stackrel{∧}{a}$=$\overline{y}-\stackrel{∧}{b}\overline{x}$可知(1)正确;由回归系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$可知(3)正确;
由最小二乘法原理可知(4)正确,(2)不正确.
故选:C.

点评 本题考查了最小二乘法求回归方程原理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.f(x)=cosx+sinx的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.李师傅在建材商店购买了三根外围直径都为10cm的钢管,为了便于携带,他将三根钢管用铁丝紧紧捆住,截面如图所示,则铁丝捆扎一圈的长度为30+10πcm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若${(x+\frac{a}{{\root{3}{x}}})^8}$(a>0)的展开式中当且仅当第6项系数最大,则实数a的取值范围是(  )
A.$\frac{5}{4}<a<2$B.$\frac{5}{4}≤a≤2$C.$2≤a≤\frac{7}{2}$D.$2<a<\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:

(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位
小数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数a,b,c,d满足$\frac{a-{e}^{a}}{b}$=$\frac{1+c}{d-1}$=1,其中e是自然对数的底,则(a-c)2+(b-d)2的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2log22x-4λlog2x-1在x∈[1,2]上的最小值是-$\frac{3}{2}$,则实数λ的值为(  )
A.λ=-1B.λ=$\frac{1}{2}$C.λ=$\frac{5}{8}$D.λ=$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|a≤x≤a+4},B={x|x2-x-6≤0}.
(1)当a=0时,求A∩B,A∪(∁RB);
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.同时掷一对均匀的骰子.
(1)用列举的方法列出所有可能的结果,共有多少种可能的结果?
(2)计算下列事件的概率;
①点数之和不大于7;
②点数之和为偶数;
③点数之和等于3的倍数.

查看答案和解析>>

同步练习册答案