精英家教网 > 高中数学 > 题目详情
双曲线
x2
9
-
y2
4
=1
的渐近线方程是(  )
A、y=±
3
2
x
B、y=±
2
3
x
C、y=±
9
4
x
D、y=±
4
9
x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,再由渐近线方程,即可得到.
解答: 解:双曲线
x2
9
-
y2
4
=1
的a=3,b=2,
则双曲线的渐近线方程为:y=±
b
a
x,
即为y=±
2
3
x.
故选B.
点评:本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现欲建造一个无盖的长方体水池,其长、宽、高分别为a、a、b,且a2•b=3,已知底面的单位造价为150元,四壁的单位造价为100元,
(1)试求无盖的长方体水池的总造价y表示为a的函数;
(2)当a为何值时,总价y取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

在有限数列{an}中,Sn是{an}的前n项和,我们把
S1+S2+S3+…+Sn
n
称为数列{an}的“均和”.现有一个共2010项的数列{an}:a1,a2,a3,…,a2009,a2010若其“均和”为2011,则有2011项的数列1,a1,a2,a3,…,a2009,a2010的“均和”为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=-
1
4
an+1=1-
1
an
,则a2009=(  )
A、
4
5
B、5
C、-
1
4
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设角α∈(0,
π
2
),f(x)的定义域为[0,1],f(0)=0,f(1)=1,当x≥y时,有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
(1)求f(
1
2
)、f(
1
4
)的值;
(2)求α的值;(3)设g(x)=4sin(2x+α)-1,且lgg(x)>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=
4cosθ
sin2θ
,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,直线l的参数方程为
x=-
2
2
t
y=1+
2
2
t
(t为参数).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,把直线l的参数方程化为普通方程;
(Ⅱ)求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项公式为an=
1
(n+1)(n+2)
,其前n项和为
7
18
,则n为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=1,
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(1,2)和圆C:x2+y2+2kx+2y+k2=0上的点距离的最小值是
 

查看答案和解析>>

同步练习册答案