分析 (1)取AC,BD的交点O,连结OE,根据中位线定理得出OE∥AP,故而AP∥平面BDE;
(2)由平面PBC⊥平面ABCD得出PC⊥平面ABCD,故而PC⊥BD,由菱形性质得出BD⊥AC,故而BD⊥平面PAC,于是平面APC⊥平面BED.
解答
证明:(1)设AC∩BD=O,连结OE
∵四边形ABCD是平行四边形,
∴O为BD中点.又E是PC的中点,
∴AP∥OE.又AP?平面BED,OE?平面BED.
∴AP∥平面BED.
(2)平面PBC⊥平面ABCD,∠PCB=90°,
∴PC⊥平面ABCD.又BD?平面ABCD,
∴PC⊥BD.
∵平面ABCD是菱形,
∴AC⊥BD,又PC?平面PAC,AC?平面PAC,AC∩PC=C,
∴BD⊥平面APC.又BD?平面BED,
∴平面PAC⊥平面BED.
点评 本题考查了线面平行的判定,面面垂直的性质与判定,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| 甲 | 11.6 | 12.2 | 13.2 | 13.9 | 14.0 | 11.5 | 13.1 | 14.5 | 11.7 | 14.3 |
| 乙 | 12.3 | 13.3 | 14.3 | 11.7 | 12.0 | 12.8 | 13.2 | 13.8 | 14.1 | 12.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组(身高) | [80,85) | [85,90) | [90,95) | [95,100) |
| 频数(人数) | 5 | 10 | 20 | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com