精英家教网 > 高中数学 > 题目详情
已知ξ的分布列为
ξ -1 0 1
P
1
2
1
6
1
3
且设η=2ξ+1,则η的期望值是(  )
A、
2
3
B、-
1
6
C、1
D、
29
36
考点:离散型随机变量及其分布列
专题:概率与统计
分析:由ξ的分布列求出Eξ=-
1
6
,再由Eη=2Eξ+1,能求出η的期望值.
解答: 解:由ξ的分布列知:
Eξ=(-1)×
1
2
+0×
1
6
+1×
1
3
=-
1
6

∵η=2ξ+1,
∴Eη=2Eξ+1=2×(-
1
6
)+1=
2
3

∴η的期望值是
2
3

故选:A.
点评:本题考查离散型随机变量的数学期的求法,是基础题,解题时要注意分布列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(
π
6
-α)=
3
3
,则tan(
6
+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}和{bn}中,前n项和分别为Sn与Tn,若a9:b9=5:3,则S17:T17的值为(  )
A、5:3B、3:5
C、2:1D、1:2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中已知b=2,B=
π
6
,C=
π
4
,则△ABC的面积(  )
A、2
3
+2
B、
3
+1
C、2
3
-2
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则(1-2i)2=(  )
A、-3+4iB、-3-4i
C、5-2iD、5-4i

查看答案和解析>>

科目:高中数学 来源: 题型:

若∫
 
T
0
x2dx=9,则常数项T的值是(  )
A、1B、3C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数中,表示相等函数的是(  )
A、y=
5x5
与y=
x2
B、y=lnex与y=elnx
C、y=
(x-1)(x+3)
x-1
与y=x+3
D、y=x0与y=
1
x0

查看答案和解析>>

科目:高中数学 来源: 题型:

C
 
9
10
+C
 
8
10
=(  )
A、45B、55
C、65D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

用三种不同的颜色填涂如图中的6个区域,要求每行、每列的区域都不同色,则不同的填涂方法种数共有(  )
A、12B、24C、12D、6

查看答案和解析>>

同步练习册答案