精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A、B、C的对边,若a=1,且2cosC+c=2b,则△ABC的周长的取值范围是(  )
A、(1,3]
B、[2,4]
C、(2,3]
D、[3,5]
考点:余弦定理
专题:三角函数的求值
分析:由余弦定理求得 cosC,代入已知等式可得(b+c)2-1=3bc,利用基本不等式求得 b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.
解答: 解:△ABC中,由余弦定理可得:2cosC=
a2+b2-c2
2ab

∵a=1,2cosC+c=2b,
1+b2-c2
b
+c=2b,化简可得:(b+c)2-1=3bc,
∵bc≤(
b+c
2
2
∴(b+c)2-1≤3×(
b+c
2
2
解得:b+c≤2(当且仅当b=c时,取等号).
∴a+b+c≤3,
再由任意两边之和大于第三边可得:b+c>a=1,
故有a+b+c>2,
则△ABC的周长的取值范围是(2,3],
故选:C.
点评:此题考查了余弦定理,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若角α的终边上有一点P(a,a),a∈R且a≠0,则sinα的值是(  )
A、
2
2
B、-
2
2
C、±
2
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(-c,0)(c>0)是双曲线
x2
a2
-
y2
b2
=1的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且点P在抛物线y2=3cx上,则e2=(  )
A、
13
-1
3
B、
5
C、
1+
5
2
D、
13
+1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果θ=3rad,那么角θ的终边所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知
AB
=
1
3
AP
,则(  )
A、
OP
=2
OA
-3
OB
B、
OP
=2
OA
+3
OB
C、
OP
=-2
OA
+3
OB
D、
OP
=3
OA
-2
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x>0,sinx=0”的否定为(  )
A、?x>0,sinx≠0
B、?x≤0,sinx≠0
C、?x≤0,sinx≠0
D、?x>0,sinx≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)在直线x+y-2=0上,则P到原点距离的最小值是(  )
A、2
2
B、
2
C、1
D、2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1中,底面边长和侧棱长均为a,侧面A1ACC1⊥底面ABC,A1B=
6
2
a.
(1)求证:A1B⊥平面AB1C:
(2)求直线BC1与平面ABB1A1,所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,集合M={x|4a-5<x<3a},N={x|-1<x<3},
(1)若a=
2
3
,求M∩N;
(2)若N⊆∁UM,求a的取值范围.

查看答案和解析>>

同步练习册答案