精英家教网 > 高中数学 > 题目详情
已知点P(1,3)和⊙O:x2+y2=3,过点P的直线L与⊙O相交于不同两点A、B,在线段AB上取一点Q,满足
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),求证:点Q总在某定直线上.
考点:直线与圆的位置关系
专题:直线与圆
分析:设A(x1,y1),B(x2,y2),Q(x,y),由
AP
=-λ
PB
AQ
QB
,化简可得( x12+y12 )-λ2x22+y22 )=(1-λ2)(x+3y).又点A,B在圆x2+y2=3上,可得即x+3y=3,从而得出结论.
解答: 解:设A(x1,y1),B(x2,y2),Q(x,y),
AP
=-λ
PB
,可得(1-x1,3-y1)=-λ(x2-1,y2-3),即
x1-λx2=1-λ①
y1-λy2=3(1-λ)②
.④
AQ
QB
,可得(x-x1,y-y1)=λ(x2-x,y2-y),即
x1+λx2=(1+λ)x③
y1+λy2=(1+λ)y④

①×③得  x122x22=(1-λ2) x,②×④可得 y122y22=3y(1-λ2).
两式相加,得( x12+y12 )-λ2x22+y22 )=(1-λ2)(x+3y),
又点A,B在圆x2+y2=3上,∴x12+y12=3,x22+y22=3,再由λ≠±1,λ≠0,
可得 x+3y=3,故点Q总在直线x+3y=3上.
点评:本题主要考查两个向量的数量积公式、两个向量坐标形式的运算,直线和圆的位置关系,式子的变形是解题的难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足方程(x-2)2+y2=3,求
y
x
的最小值(  )
A、-3
B、3
C、-
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈[
π
4
π
2
],sin2θ=
24
25
,则cosθ=(  )
A、
3
5
B、
4
5
C、
7
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,图象经过点(1,0)的是(  )
A、y=2x
B、y=x2
C、y=log2x
D、y=x 
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=2交x轴于A、B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F,若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线x=-2于点Q.
(Ⅰ) 求椭圆C的标准方程;
(Ⅱ) 若点P的坐标为(1,1)求证:直线PQ与圆O相切;
(Ⅲ) 试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π
4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)证明:直线MN∥平面OCD;
(2)求0B与平面OCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A班)已知圆C:x2+y2+2x-4y+3=0.
(1)点P(x,y)在圆C上移动,求x+y的取值范围;
(2)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(3)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-1,其中a∈(0,4),b∈R.
(1)设b<0,且{f(x)|x∈[-
1
a
,0]}=[-
3
a
,0],求a,b的值;
(2)是否存在实数a,b,使函数f(x)恰有一个零点x0∈(1,2);若存在请给出一对实数a,b,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-a)lnx+
a
x
+x,其中a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求a的值;
(Ⅱ)求函数f(x)在区间[1,e](e=2.718…)上的最小值.

查看答案和解析>>

同步练习册答案