精英家教网 > 高中数学 > 题目详情
18.在直角△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径可表示为r=$\frac{{\sqrt{{a^2}+{b^2}}}}{2}$.运用类比推理的方法,若三棱锥的三条侧棱两两相互垂直且长度分别为a,b,c,则该三棱锥外接球的半径R=$\frac{1}{2}\sqrt{{a^2}+{b^2}+{c^2}}$.

分析 直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.

解答 解::若三棱锥三条侧棱两两垂直,侧棱长分别为a,b,c,可补成一个长方体,体对角线长为$\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}$,
∵体对角线就是外接球的直径,
∴棱锥的外接球半径R=$\frac{1}{2}\sqrt{{a^2}+{b^2}+{c^2}}$.
故答案为:$\frac{1}{2}\sqrt{{a^2}+{b^2}+{c^2}}$.

点评 本题考查类比思想及割补思想的运用,考查利用所学知识分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在数列{an}中,已知a1=1,an+1-an=2,则{an}的通项公式是(  )
A.an=2n+1B.an=2nC.an=2n-1D.an=2n+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x,y,z∈R+,且x+y+z=1.
(1)若$\sqrt{x+1}$+$\sqrt{y+1}$+$\sqrt{z+1}$=2$\sqrt{3}$,求x,y,z的值.
(2)求证:$\frac{x}{1+x}$+$\frac{y}{1+y}$+$\frac{z}{1+z}$≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,且an+1+$\frac{2}{3}$Sn=1.
(1)求an
(2)令bn=n+an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x、y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的取值范围是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,满足:a1=a(a≠2,a∈R),an+1=3Sn-2n+1.求证:{Sn-2n}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=xlnx在(0,5)上的值域是[-$\frac{1}{e}$,5ln5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二项展开式(2x-1)10中x的奇次幂项的系数之和为(  )
A.$\frac{1+{3}^{10}}{2}$B.$\frac{1-{3}^{10}}{2}$C.$\frac{{3}^{10}-1}{2}$D.-$\frac{1+{3}^{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=loga(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的解析式;
(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.

查看答案和解析>>

同步练习册答案