分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间和极值即可;
(Ⅱ)求出函数的导数,问题转化为xcosθ-1≥0在[1,+∞)上恒成立,根据θ的范围,求出θ的值即可;
(Ⅲ)令$F(x)=f(x)-g(x)=mx-\frac{m+2e}{x}-2lnx$,通过讨论m的范围,求出F(x)的最大值,从而求出m的范围即可.
解答 解:(Ⅰ)∵m=0,∴$f(x)=-\frac{-1+2e}{x}-lnx$,x∈(0,+∞),
∴${f^/}(x)=\frac{2e-1}{x^2}-\frac{1}{x}=\frac{2e-1-x}{x^2}$.
令f′(x)=0,则x=2e-1∈(0,+∞).
∴x,f′(x)和f(x)的变化情况如下表:
| x | (0,2e-1) | 2e-1 | (2e-1,+∞) |
| f′(x) | + | 0 | - |
| f(x) | 递增 | 极大值f(2e-1)=-1-ln(2e-1) | 递减 |
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | $\frac{13}{2}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{11}$ | B. | $\frac{7}{11}$ | C. | $\frac{6}{11}$ | D. | $\frac{5}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com