精英家教网 > 高中数学 > 题目详情
设f(x)=-x3+x2+2ax.
(1)若f(x)在区间(
3
4
,+∞)上存在单调递增区间,求实数a的取值范围;
(2)若函数g(x)=f(x)-2ax+a有且只有一个零点,求实数a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)由f′(x)=-3x2+2x+2a,得存在x0∈(
3
4
,+∞)使f′(x0)>0,从而f′(
3
4
)>0,解出即可;
(2)由g′(x)=-3x2+2x,得x=0时g(x)有极小值=g(0)=a; x=
2
3
时g(x)有极大值=g(
2
3
)=a+
4
27
.从而g(0)=a>0,或g(
2
3
)=a+
4
27
<0.
解答: 解:(1)∵f′(x)=-3x2+2x+2a,
而f(x) 在区间(
3
4
,+∞)上存在单调递增区间.
∴存在x0∈(
3
4
,+∞)使f′(x0)>0,
又二次函数f′(x)的对称轴为x=
1
3

则f′(x)在(
3
4
,+∞)上递减
∴f′(
3
4
)>0,
即-3×
9
16
+2×
3
4
+2a>0,
故a>
3
32

(2)∵g(x)=f(x)-2ax+a=-x3+x2+a,
∴g′(x)=-3x2+2x=x(-3x+2)
∴x∈(0,
2
3
)时g′(x)>0,g(x)单调递增;
x∈(-∞,0)或(
2
3
,+∞)时g′(x)<0,g(x)单调递减.
∴x=0时g(x)有极小值=g(0)=a;
 x=
2
3
时g(x)有极大值=g(
2
3
)=a+
4
27

∵函数g(x)=f(x)-2ax+a有且只有一个零点,
∴g(0)=a>0,或g(
2
3
)=a+
4
27
<0
故:a<-
4
27
 或a>0.
点评:本题考察了函数的单调性,函数的最值问题,导数的应用,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
5
3
sin
1
x
,x≠0
0,x=0
在x=0处f(x)(  )
A、不连续
B、连续,但不可导
C、可导,但导数不连续
D、可导,且导数连续

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、
4
2
-2
7
D、
4
2
+2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(a+1)x2+ax
(1)a=-1时,求f(x)的单调区间;
(2)设a>0,x≥0,若f(x)>-
2
3
a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,AP=AB=1,E,F分别是PB,PC的中点.
(Ⅰ)求证:AE⊥PC;
(Ⅱ)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={1,2…9}中抽取3个不同的数构成集合{a1,a2,a3}
(1)对任意i≠j,求满足|ai-aj|≥2的概率;
(2)若a1,a2,a3成等差数列,设公差为ξ(ξ>0),求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量X服从正态分布N(0,σ2)且P(-2≤X≤0)=0.4,则P(X>2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程2x2+3ax+a2-a=0(a∈R)至少有一个模为1的根,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位圆上两点P、Q关于直线y=x对称,且射线OP为终边的角的大小为x.另有两点M(a,-a)、N(-a,a),且f(x)=
MP
NQ

(1)当x=
π
12
时,求
PQ
的长及扇形OPQ的面积;
(2)当点P在上半圆上运动时,求函数f(x)的表达式;
(3)若函数f(x)最大值为g(a),求g(a).

查看答案和解析>>

同步练习册答案