分析 先表示出函数g(x)的表达式,结合函数的单调性通过讨论q的范围,从而得到答案.
解答 解:依题意可知,-k2+k+2>0,解得:-1<k<2,
又k∈Z,所以k=0或1,则-k2+k+1=2,
所以:f(x)=x2.
g(x)=-qx2+(2q-1)x+1,(q≥0),
当q=0时,g(x)=-x+1在[-1,2]单调递减成立;
当q>0时,g(x)=-qx2+(2q-1)x+1开口向下,对称轴右侧单调递减,
所以 $\frac{2q-1}{2q}$≤-1,解得0<q≤$\frac{1}{4}$;
综上所述,0≤q≤$\frac{1}{4}$,
故答案为:0≤q≤$\frac{1}{4}$.
点评 本题考查了函数解析式的求法,考查函数的单调性问题,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若命题“p∧q”为假,则“p∨q”也为假 | |
| B. | 命题“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”的否定是“?x∈R,x2+x+1<0” | |
| C. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
| D. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}$ | B. | $\overrightarrow{BA}$ | C. | $\overrightarrow{AM}$ | D. | $\overrightarrow{MA}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | [-1,+∞) | C. | (1,2] | D. | [1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com