精英家教网 > 高中数学 > 题目详情
2.在△ABC中,D、E分别为AB、BC的中点,且$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,外接圆的半径为1.
(1)求证:0<B≤$\frac{π}{3}$;
(2)求a2+c2的取值范围.

分析 (1)根据平面向量的线性运算,化简$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,得出${\overrightarrow{CB}}^{2}$-${\overrightarrow{CA}}^{2}$=${\overrightarrow{CA}}^{2}$-${\overrightarrow{AB}}^{2}$,即2b2=a2+c2;再利用余弦定理求出cosB,从而求出B的取值范围;
(2)由正弦定理求出b的表达式与取值范围,再求出a2+c2的取值范围.

解答 解:(1)证明:△ABC中,D、E分别为AB、BC的中点,

∵$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,
∴($\overrightarrow{CB}$-$\overrightarrow{CA}$)•$\frac{1}{2}$($\overrightarrow{CB}$+$\overrightarrow{CA}$)=($\overrightarrow{AC}$-$\overrightarrow{AB}$)•$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$),
即${\overrightarrow{CB}}^{2}$-${\overrightarrow{CA}}^{2}$=${\overrightarrow{CA}}^{2}$-${\overrightarrow{AB}}^{2}$,
即2b2=a2+c2
∴cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{{a}^{2}{+c}^{2}-\frac{{a}^{2}{+c}^{2}}{2}}{2ac}$=$\frac{{a}^{2}{+c}^{2}}{4ac}$≥$\frac{1}{2}$,
又B∈(0,π),
∴0<B≤$\frac{π}{3}$;
(2)由正弦定理得,$\frac{b}{sinB}$=2R,
∴b=2R•sinB=2sinB;
又0<B≤$\frac{π}{3}$,
∴0<sinB≤$\frac{\sqrt{3}}{2}$,
∴0<b≤$\sqrt{3}$,
∴0<2b2≤6,
∴a2+c2的取值范围是(0,6].

点评 本题考查了平面向量的线性运算问题,也考查了正弦和余弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.求函数$y=\sqrt{x-5}+\sqrt{7-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是一个程序框图,它的功能是(  )
A.输出年份y∈[2000,2500)且y∈N“哪年是闰年”“哪年不是闰年”
B.输出年份y∈[2000,2500]且y∈N“哪年是闰年”“哪年不是闰年”
C.输出年份y∈[2000,2500)且y∈N“多少年是闰年”“多少年不是闰年”
D.输出年份y∈[2000,2500]且y∈N“多少年是闰年”“多少年不是闰年”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线4x+3y+1=0的斜率为k,在y轴上的截距为b,则(  )
A.k=-$\frac{4}{3}$,b=$\frac{1}{3}$B.k=-$\frac{4}{3}$,b=-$\frac{1}{3}$C.k=$\frac{4}{3}$,b=$\frac{1}{3}$D.k=$\frac{4}{3}$,b=-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点是F1(-2,0),离心率e=$\frac{\sqrt{6}}{3}$,
(1)求椭圆C的标准方程;
(2)如果直线l过椭圆的右焦点,且在y轴的截距是2,求直线l的方程.
(3)求以椭圆左焦点为圆心,与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场第一年销售计算机5000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销售量达到30000台?用语句描述.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C1的圆心为直线l1:x-y+1=0与直线l2:2x+y+2=0的交点,且圆C1过点(-$\frac{1}{2},\frac{\sqrt{3}}{2}$).
(I)求圆C1的方程;
(Ⅱ)圆C2:x2+y2-8x+12=0,已知P(x0,y0)为圆C2上的动点,由点P向圆C1作两条切线分别交y轴于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设p:|2x+1|>a,q:$\frac{x-1}{2x-1}$>0,若q是p的充分非必要条件,则实数a的取值范围是(-∞,0).

查看答案和解析>>

同步练习册答案