精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则a+b=7.

分析 求出函数的导数得到关于a,b的方程组,解出即可.

解答 解:对函数f(x)求导得 f′(x)=3x2-2ax-b,
又∵在x=1时f(x)有极值10,
∴$\left\{\begin{array}{l}{f′(1)=3-2a-b=0}\\{f(1)=1-a-b{+a}^{2}=10}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$,
a=3,b=-3时:
f′(x)=3(x-1)2≥0(此时无极值,舍).
a=-4,b=11时,符合题意,
∴a+b=7,
故答案为:7.

点评 本题考查了导数的应用,考查函数的极值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知(1+ax)6=a0+a1x+a2x2+…+a6x6,若a2=${∫}_{0}^{3}$(x2+2)dx,则实数a的值为(  )
A.1B.2C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设α为锐角,若$sin({α+\frac{π}{6}})=\frac{3}{5}$,则$cos({2α+\frac{π}{12}})$的值为$\frac{31}{50}\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,D、E分别为AB、BC的中点,且$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,外接圆的半径为1.
(1)求证:0<B≤$\frac{π}{3}$;
(2)求a2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.

该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为(  )
A.2017×22015B.2017×22014C.2016×22015D.2016×22014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}满足:a1+a3=10,a4+a6=$\frac{5}{4}$,则{an}的通项公式an=(  )
A.$\frac{1}{{2}^{n-4}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n-3}}$+4D.$\frac{1}{{2}^{n-2}}$+6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦点F作直线l交椭圆C于P,Q两点.若|FP|=p,|FQ|=q,则$\frac{1}{p}$+$\frac{1}{q}$=(  )
A.3B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设A、B分别为(1+x)n展开式中的奇数项之和与偶数项之和,则A2-B2的值为(  )
A.(1+x)2nB.(1-x)nC.(1-x2nD.2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算$\frac{tan40°+tan80°+tan240°}{tan40°tan80°}$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案