精英家教网 > 高中数学 > 题目详情
17.如图所示,已知D是△ABC中AB边上一点,DE∥BC且交AC于E,EF∥AB且交BC于F,且S△ADE=1,S△EFC=4,则四边形BFED的面积等于(  )
A.2B.3C.4D.5

分析 相似三角形的面积比等于对应边之比的平方,所以可先利用△EFC∽△ADE,得出对应线段的比,进而得出面积比,最后求出面积的值.

解答 解:∵DE∥BC,EF∥AB,
∴∠C=∠AED,∠FEC=∠A,
∴△EFC∽△ADE,
而S△ADE=1,S△EFC=4,
∴$\frac{AE}{EC}$=$\frac{1}{2}$
∴$\frac{AE}{AC}$=$\frac{1}{3}$,
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=$\frac{1}{9}$,
∴△ABC的面积是9,
∴四边形BFED的面积=9-5=4.
故选:C.

点评 本题主要考查了相似的判定与性质的综合应用,熟练掌握平行线分线段成比例的性质,理解相似三角形的面积比等于对应边长的平方比是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2+4x-28=0内一点A(2,0),点M在圆C上运动,若MA的垂直平分线交CM于一点P(C为圆心).
(1)求点P的轨迹方程;
(2)在点P的轨迹上是否存在点N(2,-1)对称的两点?若存在,请求出对称点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两焦点为${F_1}({-\sqrt{2},0}),{F_2}({\sqrt{2},0})$,且过点$Q(\sqrt{2},\;1)$
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线l交椭圆于M,N两点,以线段MN为直径的圆恰好过原点,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,点D在AB上,E在AC上.且∠B=∠C,那么补充下列一个条件后仍无法判定△ABE≌△ACD的是(  )
A.AE=ADB.∠AEB=∠ADCC.CE=BDD.AB=AC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:等腰梯形ABCD,其中AB为底边,求证:AC=BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,且an2-4Sn+4n=0(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$<$\frac{1}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知动圆过定点(0,1),且直线y=-1相切.
(1)求动圆圆心的轨迹C的方程;
(2)过轨迹C上一点M(2,n)作倾斜角互补的两条M线,分别与C交于异于M的A,B两点,求证:直线AB的斜率为定值:
(3)如果A,B两点的横坐标均不大于0,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知不等式|x-3|+|x-4|<2a.
(1)若a=1,求不等式的解集;  
(2)若已知不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:设f(x),g(x)都是[-a,a]上的偶函数,则f(x)+g(x),f(x)•g(x)也是[-a,a]上的偶函数.

查看答案和解析>>

同步练习册答案