精英家教网 > 高中数学 > 题目详情
11.命题:“方程x2=2的解是$x=±\sqrt{2}$”中使用了逻辑联结词或.(填写“或、且、非”)

分析 $x=±\sqrt{2}$即x=$\sqrt{2}$或x=-$\sqrt{2}$,即可得出.

解答 解:$x=±\sqrt{2}$即x=$\sqrt{2}$或x=-$\sqrt{2}$,因此使用了逻辑联结词“或”.
故答案为:或.

点评 本题考查了“或”命题、逻辑联结词,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知球O的直径PQ=4,A、B、C是球O球面上的三点,△ABC是等腰直角三角形,且∠ACB=90°,∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为(  )
A.$\frac{3\sqrt{3}}{4}$B.3C.$\frac{3\sqrt{3}}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD底面ABCD为平行四边形,且AC∩BD=O,PA=PC,PB⊥BD,平面PBD⊥平面PAC.
(Ⅰ)求证PB⊥面ABCD;
(Ⅱ)若△PAC为正三角形,∠BAD=60°,且四棱锥P-ABCD的体积为$\frac{{\sqrt{6}}}{6}$,求侧面△PCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆C:(x+2)2+y2=32与抛物线y2=2px(p>0)相交于A、B两点,若直线AB恰好经过抛物线的焦点,则p等于(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若方程$\sqrt{4x-{x^2}}=\frac{3}{4}x+m$有实数解,则m的取值范围是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,已知A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),动点C(x,y),若直线AC,BC的斜率kAC,kBC满足条件${k_{AC}}{k_{BC}}=-\frac{1}{2}$.
(1)求动点C的轨迹方程;
(2)过点(1,0)作直线l交曲线C于M,N两点,若线段MN中点的横坐标为$\frac{1}{3}$.求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2014年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图的频率分布直方图.
(1)求这40辆小型车辆车速的众数、平均数和中位数的估计值;
(2)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设l,m,n表示三条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m?β,n是l在β内的射影,m⊥l,则m⊥l;
③若m是平面α的一条斜线,A∉α,l为过A的一条动直线,则可能有l⊥m且l⊥α;
④若α⊥β,α⊥γ,则γ∥β
其中真命题的个数2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,则输出S的值是(  )
A.36B.40C.44D.48

查看答案和解析>>

同步练习册答案