精英家教网 > 高中数学 > 题目详情
9.抛物线y2=2px的焦点为F,点A、B、C在此抛物线上,点A坐标为(1,2).若点F恰为△ABC的重心,则直线BC的方程为(  )
A.x+y=0B.2x+y-1=0C.x-y=0D.2x-y-1=0

分析 先确定抛物线方程,再用两点式表示直线BC的方程,利用点F恰为△ABC的重心,即可求得直线BC的方程.

解答 解:∵抛物线y2=2px,点A(1,2)在此抛物线,
∴抛物线方程为y2=4x,且F(1,0)
可设B(b2,2b),C(c2,2c)
由“两点式方程”可知,直线BC的方程为(b+c)y-2bc=2x
由题设,点F恰为△ABC的重心,可得:3=1+b2+c2,0=2+2b+2c.
∴b+c=-1.且2bc=-1
∴直线BC:2x+y-1=0.
故选:B.

点评 本题考查直线与抛物线的位置关系,考查三角形的重心坐标公式,解题的关键是确定抛物线方程,正确设点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且(2b-c)cosA=acosC,
(1)求A;
(2)若a=2$\sqrt{3}$,求△ABC的BC边上高的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙两名学生的六次数学测试成绩(百分制)如图所示.
①甲同学成绩的中位数大于乙同学成绩的中位数;
②甲同学的平均分比乙同学高;
③甲同学的平均分比乙同学低;
④甲同学成绩的标准差小于乙同学成绩的标准差.
上面说法正确的是(  )
A.③④B.①②C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列结论中正确的是②④.
①$sin{750°}=\frac{{\sqrt{3}}}{2}$.
②如果随机变量ξ~$B(20,\frac{1}{2})$,那么D(ξ)为5.
③如果命题“?(p∨q)”为假命题,则p,q均为真命题.
④已知圆 x2+y2+2x-4y+1=0关于直线 2ax-by+2=0(a,b∈R)对称,则ab$≤\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一次期末模拟测试中,某市教研室在甲、乙两地各抽取了10名学生的数学成绩,得到茎叶图如图所示.
(Ⅰ)分别计算甲、乙两地这10名学生的平均成绩;
(Ⅱ)以样本估计总体,不通过计算,指出甲、乙两地哪个地方学生成绩较好;
(Ⅲ)在甲地被抽取的10名学生中,从成绩在120分以上的8名学生中随机抽取2人,求恰有1名学生成绩在140分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,当点P在Ω上运动时,2x+3y的最大值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为$y=\frac{3}{4}x$,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知t=$\int_0^2{(3{x^2}-1)}$dx,若(1+tx)4=a0+a1x+a2x2+a3x3+a4x4,则a1-a2+a3-a4=-624.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(2x-$\frac{π}{3}$),g(x)=x2-2,若对任意的实数x1,总存在实数x2使得f(x1)=g(x2)成立,则x2的取值范围是(  )
A.[-1,1]B.$[{-\sqrt{3},\sqrt{3}}]$C.(-∞,-1]∪[1,+∞)D.[-$\sqrt{3}$,-1]∪[1,$\sqrt{3}$]

查看答案和解析>>

同步练习册答案