精英家教网 > 高中数学 > 题目详情
15.若函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过点A(m,n),则函数f(x)=${log}_{\frac{1}{2}}$(nx2-mx+3)的单调递增区间[1,3),.

分析 根据对数函数的性质求出定点坐标,确定m,n,利用换元法,结合复合函数单调性之间的进行求解即可.

解答 解:由x+3=1得x=-2,此时y=loga1-1=-1,
即函数过定点A(-2,-1),即m=-2,n=-1,
即f(x)=${log}_{\frac{1}{2}}$(nx2-mx+3)=${log}_{\frac{1}{2}}$(-x2+2x+3)
设t=-x2+2x+3,由t=-x2+2x+3>0得-1<x<3,且当x∈(-1,1]时,函数t=-x2+2x+3递增,
当x∈[1,3)时,函数t=-x2+2x+3递减,
则函数y=${log}_{\frac{1}{2}}$t为减函数,
要求f(x)=${log}_{\frac{1}{2}}$(nx2-mx+3)的单调递增区间,即求t=-x2+2x+3的递减区间,
即x∈[1,3),
故函数f(x)的递增区间为[1,3),
故答案为:[1,3).

点评 本题主要考查函数单调区间的求解,利用复合函数单调性之间的关系以及对数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知O为坐标原点,A,B两点的坐标均满足不等式组$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$则tan∠AOB的最大值等于(  )
A.$\frac{3}{4}$B.$\frac{5}{7}$C.$\frac{4}{7}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C:$\frac{{x}^{2}}{4}+{y}^{2}=1$,直线l:$\left\{\begin{array}{l}{x=t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数)
(1)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,写出直线l的极坐标方程和曲线C的参数方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的中心为原点O,长轴的左右端点分别为A、B、F为椭圆的左焦点,离心率e=$\frac{\sqrt{2}}{2}$,且$\overrightarrow{AF}$•$\overrightarrow{FB}$=1.
(1)求椭圆的标准方程;
(2)若D、E是抛物线y2=-8x的准线上的两个动点,且|DE|=4,设△DEF的内切圆圆心C的坐标为(x,y)
①求△DEF的周长l关于x、y的表达式;
②求点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义[X]表示不超过X的最大整数.设n∈N*,且M=(n+1)2+n-[$\sqrt{(n+1)^{2}+n+1}$]2,则下列不等式恒成立的是(  )
A.M2≥2n+1B.当n≥2时,2M≥4n-2C.M2≥2n+1D.当n≥3时,2M≥2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若2×4a-2a×3b+2×9b=2a+3b+1,求2a+3b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+4.
(1)求函数f(x)的最小正周期和最大值;
(2)已知f(α)=5,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.交通指数是交通拥堵指数的简称,是综合反映道路间畅通或拥堵的概念.记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从郑州市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图 所示:
(Ⅰ)据此频率分布直方图估算交通指数T∈[3,9]时的中位数和平均数;
(Ⅱ)据此频率分布直方图求出该市早高峰三环以内的3个路段至少有两个严重拥堵的概率是多少?
(Ⅲ)某人上班路上所用时间若畅通时为25分钟,基本畅通为35分钟,轻度拥堵为40分钟;中度拥堵为50分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.

查看答案和解析>>

同步练习册答案