精英家教网 > 高中数学 > 题目详情
1.设f(x)=$\frac{{a}^{x}}{{a}^{x}+1}$(a>0,a≠1),[m]表示不超过实数m的最大整数,求函数[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域.

分析 把所求的式子代入整理可得[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=[$\frac{1}{2}$-$\frac{1}{1+{a}^{x}}$]+[$\frac{1}{1+{a}^{x}}$-$\frac{1}{2}$],由指数函数的性质分类讨论求解.

解答 解:∵f(x)=$\frac{{a}^{x}}{{a}^{x}+1}$=1-$\frac{1}{1+{a}^{x}}$
∴[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=[$\frac{1}{2}$-$\frac{1}{1+{a}^{x}}$]+[$\frac{1}{1+{a}^{x}}$-$\frac{1}{2}$]
∵ax>0,∴0<$\frac{1}{1+{a}^{x}}$<1
当0<$\frac{1}{1+{a}^{x}}$<$\frac{1}{2}$时,[$\frac{1}{2}$-$\frac{1}{1+{a}^{x}}$]=0,[$\frac{1}{1+{a}^{x}}$-$\frac{1}{2}$]=-1,原式为-1
当$\frac{1}{2}$<$\frac{1}{1+{a}^{x}}$<1时,[$\frac{1}{2}$-$\frac{1}{1+{a}^{x}}$]=-1,[$\frac{1}{1+{a}^{x}}$-$\frac{1}{2}$]=0,原式为-1
当$\frac{1}{1+{a}^{x}}$=$\frac{1}{2}$时,[$\frac{1}{2}$-$\frac{1}{1+{a}^{x}}$]=0,[$\frac{1}{1+{a}^{x}}$-$\frac{1}{2}$]=0,原式为0
故函数的值域为{-1,0}.

点评 本题主要考查了利用题目中的定义求解函数的值域,解题的关键是要根据指数函数的值域,分类讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若x,y满足条件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$,则z=$\frac{1}{2}$x+y的最大值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tan(π-α)=-$\frac{2}{3}$,且α∈(-π,-$\frac{π}{2}}$),则$\frac{{cos({-α})+3sin({π+α})}}{{cos({π-α})+9sinα}}$的值为(  )
A.$-\frac{1}{5}$B.$-\frac{3}{7}$C.$\frac{1}{5}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.由下列对象组成的集体属于集合的是(  )
A.不超过π的正整数B.本班中成绩好的同学
C.高一数学课本中所有的简单题目D.接近于0的数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)=x2+2ax+3在(-∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点(0,1)且与双曲线x2-y2=1只有一个公共点的直线有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则{cn}的前10项和为(  )
A.979B.557C.467D.978

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有下列命题:
①若xy=0,则|x|+|y|=0;
②若a>b,则a+c>b+c;
③矩形的对角线互相垂直,
其中真命题共有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,P(m,-2m)(m≠0)是角α终边上的一点.则tan(α+$\frac{π}{4}$)的值为(  )
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

同步练习册答案