精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求角C的大小;
(2)求的最大值.

(1);(2)2.

解析试题分析:本题考查两角和与差的正弦公式和三角函数最值以及解三角形中正弦定理的应用,考查运用三角公式进行三角变换的能力,考查运算能力.第一问,先利用两角和的正弦公式将等式的左边变形,再利用2个正弦值相等分析出2个角的关系,进行求角;第二问,先利用正弦定理,将边换成角,将第一问的结果代入,利用两角和的正弦公式化简表达式,最后利用三角函数值求最值.
试题解析:(1),即,则.   3分
因为,又进而
所以,故.     6分
(2)由正弦定理及(1)得
.   9分
时,取最大值2.     10分
考点:1.两角和的正弦公式;2.正弦定理;3.三角函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直角坐标系xOy中,锐角△ABC内接于圆已知BC平行于x轴,AB所在直线方程为,记角A,B,C所对的边分别是a,b,c.

(1)若的值;
(2)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最大值和最小正周期;
(2)若是第二象限的角,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期;
(2)求在区间上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求的最小正周期和单调区间;
(2)若的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数,F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及单调区间;
(Ⅱ)求函数F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边分别为,若
(Ⅰ)求△的面积;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)写出函数f(x)的最小正周期及单调递增区间;
(2)当时,函数f(x)的最大值与最小值的和为,求的值.

查看答案和解析>>

同步练习册答案