精英家教网 > 高中数学 > 题目详情
18.在△ABC中,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,D为BC中点,$\overrightarrow{AB}$,$\overrightarrow{AC}$的夹角为60°.
(1)求|$\overrightarrow{AD}$|的长;
(2)若$\overrightarrow{AP}$=$\frac{1}{2}$λ($\overrightarrow{PB}$+$\overrightarrow{PC}$)(0≤λ≤1),P为AD上一动点,求$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最大,最小值.

分析 (1)$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,可得$|\overrightarrow{BC}{|}^{2}$=${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}$-2$\overrightarrow{AC}•\overrightarrow{AB}$,解得|$\overrightarrow{BC}$|.在△ABD与△ACD中,分别利用余弦定理可得:AB2+AC2=2AD2+$\frac{1}{2}B{C}^{2}$,代入解出即可.
(2)λ=0时,$\overrightarrow{AP}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=0.0<λ≤1时,可得$\overrightarrow{PB}+\overrightarrow{PC}$=$\frac{2}{λ}\overrightarrow{AP}$,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=-$\frac{2}{λ}{\overrightarrow{AP}}^{2}$,当点P与点D重合时,λ=1,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=-2${\overrightarrow{AD}}^{2}$,取得最小值,即可得出.

解答 解:(1)$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,
∴$|\overrightarrow{BC}{|}^{2}$=${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}$-2$\overrightarrow{AC}•\overrightarrow{AB}$=22+32-2×2×3cos60°=7,
∴|$\overrightarrow{BC}$|=$\sqrt{7}$.
在△ABD与△ACD中,分别利用余弦定理可得:AB2=AD2+BD2-2AD•BDcos∠ADB,
AC2=AD2+CD2-2AD•CD•cos(π-∠ADB),
∴AB2+AC2=2AD2+$\frac{1}{2}B{C}^{2}$,
∴${3}^{2}+{2}^{2}=2A{D}^{2}+\frac{1}{2}×(\sqrt{7})^{2}$,
解得$|\overrightarrow{AD}|$=$\frac{\sqrt{19}}{2}$.
(2)λ=0时,$\overrightarrow{AP}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=0.
0<λ≤1时,∵$\overrightarrow{AP}$=$\frac{1}{2}$λ($\overrightarrow{PB}$+$\overrightarrow{PC}$),∴$\overrightarrow{PB}+\overrightarrow{PC}$=$\frac{2}{λ}\overrightarrow{AP}$.
∴$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=-$\frac{2}{λ}{\overrightarrow{AP}}^{2}$,
当点P与点D重合时,λ=1,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=-2${\overrightarrow{AD}}^{2}$=$-\frac{19}{2}$,取得最小值.
∴$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最大、最小值分别为0;$-\frac{19}{2}$.

点评 本题考查了数量积运算性质、余弦定理,考查了分类讨论、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=3x-2,且f(a)=4,则a的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在区间(-1,4)中任取一个数x使得2x>1的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}的通项为an=$\frac{n}{{n}^{2}+4}$,则数列{an}中的最大项为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{2-sinα}{cosα-1}$的值域是(-∞,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若θ∈($\frac{5}{4}$π,$\frac{3}{2}$π),则$\sqrt{1-2sinθcosθ}$为(  )
A.cosθ-sinθB.sinθ+cosθC.sinθ-cosθD.-cosθ-sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,a1=5,并且a1+a2+…+an-1=an(n≥2且n∈N*),求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.下列是对“已知关于x的一元二次方程x2+$\sqrt{3}$kx+k2-k+2=0,判断此方程的根的情况”这一题目的解答过程,请你写出正确的解答过程.
解:△=b2-4ac=($\sqrt{3}$k)2-4(k2-k+2)=(k-2)2+4.
因为(k-2)2≥0.所以(k-2)2+4>0.
故原方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案