精英家教网 > 高中数学 > 题目详情
4.已知在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\sqrt{2}$c-ccosA=acosC.
(Ⅰ)求$\frac{b}{c}$的值;
(Ⅱ)若b+c=$\sqrt{2}$+1,a=$\sqrt{3}$,求△ABC的面积S.

分析 (I)由$\sqrt{2}$c-ccosA=acosC,利用正弦定理可得$\sqrt{2}$sinC=sinCcosA+sinAcosC=sin(A+C)=sinB,再利用正弦定理即可得出.
(II)由b+c=$\sqrt{2}$+1,$\frac{b}{c}$=$\sqrt{2}$.解得b,c.利用勾股定理的逆定理可得A为直角.即可得出面积.

解答 解:(I)∵$\sqrt{2}$c-ccosA=acosC,∴$\sqrt{2}$sinC=sinCcosA+sinAcosC=sin(A+C)=sinB,∴$\sqrt{2}$c=b.
∴$\frac{b}{c}$=$\sqrt{2}$.
(II)由b+c=$\sqrt{2}$+1,$\frac{b}{c}$=$\sqrt{2}$.解得b=$\sqrt{2}$,c=1.
a=$\sqrt{3}$,∴b2+c2=a2.∴A=$\frac{π}{2}$
∴△ABC的面积S=$\frac{1}{2}×1×\sqrt{2}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查了正弦定理、和差公式、勾股定理的逆定理、三角函数求值、三角形面积,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某商场拟对商品进行促销,现有两种方案供选择.每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,顶计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4.第二个月销量是笫一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令ξi(i=1,2)表示实施方案i的第二个月的销量是促销前销量的倍数.
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.
销量倍数ξi≤1.71.7<ξi<2.3ξi2.3
利润(万元)152025

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=log23,b=log3$\frac{1}{2}$,c=3-2,则下列结论正确的是(  )
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等差数列,{bn}是等比数列,且a1=b1=1,a2017=b2017=2017,则下列结论正确的是(  )
A.a1008>a1009B.a2016<b2016
C.?n∈N*,1<n<2017,an>bnD.?n∈N*,1<n<2017,使得an=bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲、乙两人可参加A,B,C三个不同的学习小组,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个学习小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在(x-2)6展开式中,二项式系数的最大值为 a,含x5项的系数为b,则$\frac{a}{b}$=(  )
A.$\frac{5}{3}$B.$-\frac{5}{3}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$与g(x)=sin(2x+θ)对称轴完全相同,将f(x)图象向右平移$\frac{π}{3}$个单位得到h(x),则h(x)的解析式是h(x)=-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在梯形ABCD中,AB∥DC,AD=AB=BC=1,$∠ADC=\frac{π}{3}$,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=1,点M在线段EF上.
(1)当$\frac{FM}{EM}$为何值时,AM∥平面BDF?证明你的结论;
(2)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知e是自然对数的底数,f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2017.
(1)设m=1,求h(x)的极值;
(2)设m<-e2,求证:函数φ(x)没有零点;
(3)若m≠0,x>0,设$F(x)=\frac{m}{f(x)}+\frac{4x+4}{g(x)-1}$,求证:F(x)>3.

查看答案和解析>>

同步练习册答案