精英家教网 > 高中数学 > 题目详情
12.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为(  )
A.20,2B.24,4C.25,2D.25,4

分析 先由频率分布直方图求出[50,60)的频率,结合茎叶图中得分在[50,60)的人数求得本次考试的总人数,根据频率分布直方图可知[90,100]内的人数与[50,60)的人数一样.

解答 解:由频率分布直方图可知,组距为10,[50,60)的频率为0.008×10=0.08,
由茎叶图可知[50,60)的人数为2,设参加本次考试的总人数为N,则,所以N=$\frac{2}{0.08}$=25,
根据频率分布直方图可知[90,100]内的人数与[50,60)的人数一样,都是2,
故选:C.

点评 本题考查了茎叶图和频率分布直方图,茎叶图中,茎在高位,叶在低位,频率分布直方图中要注意纵轴的单位,同时掌握频率和等于1,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.北京市某校组织学生惨叫英语测试,某班50人的成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100),已知前3组的人数依次构成等比数列,第2组、第4组、第3组的人数依次构成等差数列,则及格(大于等于60分)的人数是35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{bn}是等比数列,b9是1和3的等差中项,则b2b16=(  )
A.16B.8C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从高三的期末考试成绩中,选择了五位同学A,B,C,D,E,他们的考试成绩如表:
ABCDE
语文119121123125134
数学123141118122132
(1)从该小组语文低于130分的同学中任选2人,求选到的2人分数都在124以下的概率;
(2)从该小组同学中任选2人,求选到的2人的语文分数都在120以上且数学分都在[100,140)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知二项式(1+xcosθ)5的展开式中第三项的系数与(x+5sinθ)3的展开式中第二项的系数相等,其中θ为锐角,则cosθ=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用红、黄、蓝三种颜色去涂图中标号为1,2…9的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有(  )种
123
456
789
A.18B.36C.72D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.袋中装有4个黑球和3个白球,现在甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取…取后不放回,每次一人只取1球,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用ξ表示终止时所需要的取球次数.
(1)求甲第一次取球就取到白球的概率;
(2)求随机变量ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则$\overrightarrow{a}$∥$\overrightarrow{c}$是($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,用下面要求的方法证明:$\frac{a}{\sqrt{b}}$+$\frac{b}{\sqrt{a}}$≥$\sqrt{a}$+$\sqrt{b}$.
(1)分析法;
(2)反证法.

查看答案和解析>>

同步练习册答案