分析 (Ⅰ)设“甲第一次取到白球”的事件为A,则P(A)=P(ξ=1),由此能求出甲第一次取球就取到白球的概率.
(Ⅱ)由题意知ξ的可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出取球次数ξ的概率分布和数学期望.分)
解答 解:(Ⅰ)设“甲第一次取到白球”的事件为A,则P(A)=P(ξ=1).
因为事件“ξ=1”表示“甲第一次取球就取到白球”,
所以P(A)=P(ξ=1)=$\frac{3}{7}$.(4分)
(Ⅱ)由题意知ξ的可能取值为1,2,3,4,5.(6分)
P(ξ=1)=$\frac{3}{7}$;
P(ξ=2)=$\frac{4×3}{7×6}$=$\frac{2}{7}$;
P(ξ=3)=$\frac{4×3×3}{7×6×5}$=$\frac{6}{35}$;
P(ξ=4)=$\frac{4×3×2×3}{7×6×5×4}$=$\frac{3}{35}$;
P(ξ=5)=$\frac{4×3×2×1×3}{7×6×5×4×3}$=$\frac{1}{35}$.(10分)
所以取球次数ξ的概率分布如下表所示:
| ξ | 1 | 2 | 3 | 4 | 5 |
| P | $\frac{3}{7}$ | $\frac{2}{7}$ | $\frac{6}{35}$ | $\frac{3}{35}$ | $\frac{1}{35}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20,2 | B. | 24,4 | C. | 25,2 | D. | 25,4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,m∥α,n∥β,则m∥n | B. | 若α⊥β,m⊥α,n∥β,则m⊥n | ||
| C. | 若m∥α,n∥α,m∥β,n∥β,m⊥n,则α∥β | D. | 若m⊥α,n?β,m⊥n,则α⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com