精英家教网 > 高中数学 > 题目详情
4.袋中装有4个黑球和3个白球,现在甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取…取后不放回,每次一人只取1球,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用ξ表示终止时所需要的取球次数.
(1)求甲第一次取球就取到白球的概率;
(2)求随机变量ξ的概率分布和数学期望.

分析 (Ⅰ)设“甲第一次取到白球”的事件为A,则P(A)=P(ξ=1),由此能求出甲第一次取球就取到白球的概率.
(Ⅱ)由题意知ξ的可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出取球次数ξ的概率分布和数学期望.分)

解答 解:(Ⅰ)设“甲第一次取到白球”的事件为A,则P(A)=P(ξ=1).
因为事件“ξ=1”表示“甲第一次取球就取到白球”,
所以P(A)=P(ξ=1)=$\frac{3}{7}$.(4分)
(Ⅱ)由题意知ξ的可能取值为1,2,3,4,5.(6分)
P(ξ=1)=$\frac{3}{7}$;
P(ξ=2)=$\frac{4×3}{7×6}$=$\frac{2}{7}$;
P(ξ=3)=$\frac{4×3×3}{7×6×5}$=$\frac{6}{35}$;
P(ξ=4)=$\frac{4×3×2×3}{7×6×5×4}$=$\frac{3}{35}$;
P(ξ=5)=$\frac{4×3×2×1×3}{7×6×5×4×3}$=$\frac{1}{35}$.(10分)
所以取球次数ξ的概率分布如下表所示:

ξ12345
P$\frac{3}{7}$$\frac{2}{7}$$\frac{6}{35}$$\frac{3}{35}$$\frac{1}{35}$
E(ξ)=1×$\frac{3}{7}+2×\frac{2}{7}+3×\frac{6}{35}+4×\frac{3}{35}+5×\frac{1}{35}$=2.(13分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求下列极限:
(1)$\underset{lim}{x→1}$$\frac{{x}^{2}-1}{x-1}$;
(2)$\underset{lim}{x→-2}$$\frac{x+2}{{x}^{2}+x-2}$;
(3)$\underset{lim}{x→-1}$$\frac{{x}^{2}+x}{{x}^{2}-2x-3}$;
(4)$\underset{lim}{x→2}$$\frac{\sqrt{x+2}-1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$z=\frac{1}{1+i}+i$(其中i为虚数单位),则$\overrightarrow{z}$的模等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为(  )
A.20,2B.24,4C.25,2D.25,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x2-3x.
(Ⅰ)若λ+μ=1(λ,μ>0),求证:f(λx1+μx2)≤λf(x1)+μf(x2);
(Ⅱ)若对任意x1,x2∈[0,1],都有|f(x1)-f(x2)|≤L|x1-x2|,求L的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A,B,C,D,E五个等级.某考场考生的两颗考试成绩数据统计如图所示,其中“科目一”成绩为D的考生恰有4人.
(1)分别求该考场的考生中“科目一”和“科目二”成绩为A的考生人数;
(2)已知在该考场的考生中,恰有2人的两科成绩均为A,在至少一科成绩为A的考生中随机抽取2人进行访谈,设这2人中两科成绩均为A的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足$\left\{\begin{array}{l}2x+y≥0\\ 4x-y≤8\\ x-y≥-1\end{array}\right.$,则x2+y2-2x的取值范围是[-1,19].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校为了引导学生树立正确的消费观,对某班50名学生每天的零花钱(单位:元)进行了调查,将他们的零用钱分成5段[2,6),[6,10),[10,14),[14,18),[18,22),得到如下频率分布直方图.
(Ⅰ)求频率分布直方图中x值,并估计此班50名同学每天零用钱的众数和平均数;
(Ⅱ)若从每天零用钱在[14,22)中任取2人,求这两人在[18,22)中恰有一人的概率(视频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m,n是两条不同的直线,α,β是两个不同的平面,则下列叙述正确的是(  )
A.若α∥β,m∥α,n∥β,则m∥nB.若α⊥β,m⊥α,n∥β,则m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,则α∥βD.若m⊥α,n?β,m⊥n,则α⊥β

查看答案和解析>>

同步练习册答案