| A. | 1+$\frac{4027}{2}$•32015 | B. | $\frac{3}{2}$+$\frac{4027}{2}$•32015 | C. | 1+$\frac{4027}{2}$•32014 | D. | $\frac{3}{2}$+$\frac{4027}{2}$•32014 |
分析 由条件求得an和bn 的值,可得Cn=anbn的解析式,再利用错位相加法求得数列{Cn}的前n项的和为Tn的值.
解答 解:令x=1,可得二项式(2x+1)n的各项系数和为可得an=3n,
展开式x的系数为bn =${C}_{n}^{n-1}$•2=2n,Cn=anbn=2n•3n,
由T2014 =2•31+4•32+6•33+…+4028•32014 ①,
可得3•T2014=2•32+4•33+6•34+…+4026•32014+4028•32015 ②,
①-②可得-2T2014=2•31+2•32+2•33+…+2•32014-4028•32015,
∴T2014=$\frac{3}{2}$+$\frac{4027}{2}$•32015,
故选:B.
点评 本题主要考查二项式定理的应用,用错位相加法求数列的前n项和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\sqrt{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,$\frac{3}{2}$] | B. | [-1,2] | C. | [-2,3] | D. | [1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com