精英家教网 > 高中数学 > 题目详情
斜率为2的直线经过抛物线的焦点,与抛物线交与A、B两点,则=     .
5

试题分析:根据已知抛物线的方程可知其焦点坐标为(1,0),则直线方程为y=2(x-1),代入抛物线中,,得到[2(x-1)]2=4x,x2-3x+1=0,∴x1+x2=3
根据抛物线的定义可知|AB| =x1+x2+p=3+2=5
故答案为5.
点评:解决该试题的关键是运用设而不求的思想,设直线方程,并与抛物线联立方程组,结合韦达定理得到弦长的求解,|AB|=x1+ +x2+表示的为过焦点的弦长公式要熟练掌握。.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一点到一个焦点的距离为5,则到另一个焦点的距离为
A.5B.6C.4D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;
(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为,直线交于两点.则="________."

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(4,-)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦点为,以为边作正三角形,若双曲线恰好平分另外两边,则双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当
变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,
若不是,说明理由.

查看答案和解析>>

同步练习册答案