5£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãP£¨$\sqrt{3}$£¬y0£©ÔÚ¸ÃË«ÇúÏßÉÏ£¬Èô$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=¡ÀxB£®$y=¡À\sqrt{2}x$C£®$y=¡À\sqrt{3}x$D£®y=¡À2x

·ÖÎö Çó³öË«ÇúÏߵĽ¹µã£¬ÇóµÃÏòÁ¿$\overrightarrow{P{F}_{1}}$£¬$\overrightarrow{P{F}_{2}}$µÄ×ø±ê£¬ÓÉÌõ¼þÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ¿ÉµÃ·½³Ì£¬ÔÙÓÉPÂú×ãË«ÇúÏß·½³Ì£¬½â·½³Ì¿ÉµÃb£¬ÔÙÓÉË«ÇúÏߵĽ¥½üÏß·½³Ì¼´¿ÉµÃµ½£®

½â´ð ½â£ºË«ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-$\sqrt{2+{b}^{2}}$£¬0£©£¬F2£¨$\sqrt{2+{b}^{2}}$£¬0£©£¬
µãP£¨$\sqrt{3}$£¬y0£©ÔÚ¸ÃË«ÇúÏßÉÏ£¬
Ôò$\frac{3}{2}$-$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬¼´ÓÐy02=$\frac{1}{2}$b2£¬¢Ù
ÓÖ$\overrightarrow{P{F}_{1}}$=£¨-$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£¬-y0£©£¬
$\overrightarrow{P{F}_{2}}$=£¨$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£¬-y0£©£¬
Èô$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬
Ôò£¨-$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£©•£¨$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£©+y02=0£¬¢Ú
½âµÃb2=2£¬¼´b=$\sqrt{2}$£®
¼´ÓÐË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À$\frac{b}{\sqrt{2}}$x£®
¼´Îªy=¡Àx£®
¹ÊÑ¡A£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²é½¥½üÏß·½³ÌµÄÇ󷨣¬Í¬Ê±¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿´¹Ö±µÄÌõ¼þ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®a£¬b£¬cΪ¿Õ¼äÖÐÈýÌõÖ±Ïߣ¬Èôa¡Íb£¬b¡Íc£¬ÔòÖ±Ïßa£¬cµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®Æ½ÐÐB£®ÏཻC£®ÒìÃæD£®ÒÔÉ϶¼ÓпÉÄÜ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=lnax-$\frac{x-a}{x}$£¨a¡Ù0£©
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Ö¤Ã÷£ºµ±a=1ʱ£¬´æÔÚΨһһÌõ¹ýµã£¨1£¬-1£©µÄÖ±ÏßÓ뺯Êýy=f£¨x£©µÄͼÏóÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADÊÇBC±ßÉϵÄÖÐÏߣ¬FÊÇADÉϵÄÒ»µã£¬ÇÒ$\frac{AF}{FD}$=$\frac{1}{5}$£¬Á¬½ÓCF²¢ÑÓ³¤½»ABÓÚE£¬Ôò$\frac{AE}{EB}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{12}$B£®$\frac{1}{3}$C£®$\frac{1}{5}$D£®$\frac{1}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Éè$\frac{3}{2}$¡Üx¡Ü2£¬ÇóÖ¤£º2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$£¼8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªx¡¢y¡ÊR+£¬ÇÒx+y=4£¬Çó$\frac{1}{x}$+$\frac{3}{y}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁк¯Êý¶¨ÒåÓò£º
£¨1£©y=1-sinx
£¨2£©y=$\frac{1}{1+sinx}$
£¨3£©y=$\sqrt{\frac{1}{2}-cosx}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Çóº¯Êýf£¨x£©=$\frac{2+{x}^{2}}{x}$ÔÚx=1µ½x=1+¡÷xµÄƽ¾ù±ä»¯ÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos£¨¦È+$\frac{¦Ð}{3}$£©£¬ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{3}$£©=2£®
£¨1£©ÈôC1£¬C2ÏཻÓÚA¡¢BÁ½µã£¬Çó³öÏß¶ÎABµÄ³¤£»
£¨2£©ÇóÏßABµÄ´¹Ö±Æ½·ÖÏߵļ«×ø±ê·½³Ì£»
£¨3£©ÇóÇúÏßC2Éϵĵ㵽C3µÄ×îÔ¶¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸