精英家教网 > 高中数学 > 题目详情
12.已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.

分析 由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面积.

解答 解:设CD=x,则CE=2x.
因为CA=1,CB=3,
由相交弦定理,得CA•CB=CD•CE,
所以1×3=x•2x=2x2,所以$x=\frac{{\sqrt{6}}}{2}$.…2分
取DE中点H,则OH⊥DE.
因为$O{H^2}=O{E^2}-E{H^2}=4-{(\frac{3}{2}x)^2}=\frac{5}{8}$,
所以$OH=\frac{{\sqrt{10}}}{4}$.…6分
又因为$CE=2x=\sqrt{6}$,
所以△OCE的面积$S=\frac{1}{2}OH•CE=\frac{1}{2}×\frac{{\sqrt{10}}}{4}×\sqrt{6}=\frac{{\sqrt{15}}}{4}$. …10分.

点评 本题考查的是相交弦定理,垂径定理与勾股定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.水是地球上宝贵的资源,由于价格比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X为用水量吨数在[1,1.5)中的获奖的家庭数,Y为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量Z=|X-Y|,求Z的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的体积为$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数z=(1+2i)2,其中i为虚数单位,则z的实部为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两曲线f(x)=2sinx,g(x)=acosx,$x∈(0\;,\;\;\frac{π}{2})$相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)={x^{\frac{1}{2}}}$,则(  )
A.?x0∈R,使得f(x)<0
B.?x∈[0,+∞),f(x)≥0
C.?x1,x2∈[0,+∞),使得$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$
D.?x1∈[0,+∞),?x2∈[0,+∞)使得f(x1)>f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.文渊阁本四库全书《张丘建算经》卷上(二十三):今有女子不善织,日减功,迟.初日织五尺,末日织一尺,今三十日织訖.问织几何?意思是:有一女子不善织布,逐日所织布按等差数列递减,已知第一天织5尺,最后一天织1尺,共织了30天.问共织布90尺.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{2}{x^2}+({1-a})x-alnx$.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a<0,若对?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,则其图象向右平移$\frac{π}{3}$个单位后的单调递减区间是(  )
A.$[{-\frac{π}{4}+kπ,\frac{π}{4}+kπ}](k∈Z)$B.$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}](k∈Z)$
C.$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}](k∈Z)$D.$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}](k∈Z)$

查看答案和解析>>

同步练习册答案