精英家教网 > 高中数学 > 题目详情
8.已知曲线y=$\frac{{x}^{2}}{4}$-3lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为(  )
A.2B.-2C.3D.-2或3

分析 求出函数的定义域和导数,利用导数是切线的斜率进行求解即可.

解答 解:函数的定义域为(0,+∞),
则函数的导数f′(x)=$\frac{x}{2}-\frac{3}{x}$,
由f′(x)=$\frac{x}{2}-\frac{3}{x}$=$\frac{1}{2}$,
即x2-x-6=0,
解得x=3或x=-2(舍),
故切点的横坐标为3,
故选:C

点评 本题主要考查导数的几何意义的应用,求函数的导数,解导数方程即可,注意定义域的限制.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知tanα=2,求值:$\frac{1}{2sinαcosα+co{s}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线f(x)=4x2+4x+1在点(1,f(1))处的切线方程是y=12x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx
(1)若直线l过点(1,0),并且与曲线y=f(x)相切,求直线l的方程;
(2)设函数g(x)=f(x)-a(x-1)在[1,e]上有且只有一个零点,求a的取值范围.(其中a∈R,e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两条不同直线m,n,三个不同平面α,β,γ,下列命题中正确的是(  )
A.若m∥α,n∥α,m∥nB.若m∥α,m∥β,α∥βC.若α⊥γ,β⊥γ,α∥βD.若m⊥α,n?α,m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,错误的是(  )
A.平行于同一平面的两个不同平面平行
B.一条直线如果与两个平行平面中的一个相交,则必与另一个平面相交
C.如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直
D.若直线不平行于平面,则此直线与这个平面内的直线都不平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设α,β是两个不同的平面,l是一条直线,以下命题正确的是(  )
A.若l⊥α,α⊥β,则l?βB.若l∥α,α∥β,则l?βC.若l∥α,α⊥β,则l⊥βD.若l⊥α,α∥β,则l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=eax+$\frac{1}{x+1}$在点(0,2)处的切线与直线y=x+3平行,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=2,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n}{n-1}$(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案