精英家教网 > 高中数学 > 题目详情
20.设α,β是两个不同的平面,l是一条直线,以下命题正确的是(  )
A.若l⊥α,α⊥β,则l?βB.若l∥α,α∥β,则l?βC.若l∥α,α⊥β,则l⊥βD.若l⊥α,α∥β,则l⊥β

分析 本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,C中由条件均可能得到l∥β,即A,B,C三个答案均错误,只有D满足平面平行的性质,分析后不难得出答案.

解答 解:若l⊥α,α⊥β,则l?β或l∥β,故A错误;
若l∥α,α∥β,则l?β或l∥β,故B错误;
若l∥α,α⊥β,则l⊥β或l∥β,故C错误;
若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故D正确;
故选:D

点评 判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a?α⇒a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α⇒?a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(理)设函数f(x)=aexlnx+$\frac{b{e}^{x-1}}{x}$,
(1)求导函数f′(x)
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC成60°的两面角,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①AC⊥BD;
②△DBC是等边三角形;
③三棱锥D-ABC的体积是$\frac{\sqrt{6}}{24}$.
其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知曲线y=$\frac{{x}^{2}}{4}$-3lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为(  )
A.2B.-2C.3D.-2或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,6)处的切线方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB是圆柱的母线,O′是上底面的圆心,△BCD是下底面圆的内接三角形,且BD是下底面的直径,E是CD的中点.求证:
(1)O′E∥平面ABC;
(2)平面O′CD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=lnx在x=e处的切线斜率为(  )
A.-eB.eC.-$\frac{1}{e}$D.$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x3-3x2+1在点x=1处的切线方程为3x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,BB1的中点,求异面直线AM与BD所成角的大小.

查看答案和解析>>

同步练习册答案