精英家教网 > 高中数学 > 题目详情
19.曲线f(x)=4x2+4x+1在点(1,f(1))处的切线方程是y=12x-3.

分析 求出函数的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程.

解答 解:f(x)=4x2+4x+1的导数为f′(x)=8x+4,
即有在点(1,f(1))处的切线斜率为k=12,
切点为(1,9),
则在点(1,f(1))处的切线方程为y-9=12(x-1),
即为y=12x-3.
故答案为:y=12x-3.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义,正确求导和运用点斜式方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知{an}是等比数列,满足a4=27,q=-3,求a7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(理)设函数f(x)=aexlnx+$\frac{b{e}^{x-1}}{x}$,
(1)求导函数f′(x)
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是线段PB的中点.
(1)证明:平面PAD⊥平面PCD;
(2)求点M到平面PCD的距离;
(3)求直线MC与平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为(  )
A.y=4xB.y=3xC.y=-3xD.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+x-16,求曲线y=f(x)在点(2,-6)处的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC成60°的两面角,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①AC⊥BD;
②△DBC是等边三角形;
③三棱锥D-ABC的体积是$\frac{\sqrt{6}}{24}$.
其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知曲线y=$\frac{{x}^{2}}{4}$-3lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为(  )
A.2B.-2C.3D.-2或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x3-3x2+1在点x=1处的切线方程为3x+y-2=0.

查看答案和解析>>

同步练习册答案