精英家教网 > 高中数学 > 题目详情
11.计算:4cos50°-tan40°=(  )
A.$\sqrt{3}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

分析 利用“切化弦”思想,然后通分,根据同角三角函数关系式和两角和与差的公式求解.

解答 解:由4cos50°-tan40°=4cos50°-$\frac{sin40°}{cos40°}$=$\frac{4cos50°cos40°-sin40°}{cos40°}$=$\frac{4sin40°cos40°-sin40°}{cos40°}$=$\frac{2cos10°-sin(30°+10°)}{cos40°}$=$\frac{2cos10°-\frac{1}{2}cos10°-\frac{\sqrt{3}}{2}sin10°}{cos40°}$=$\frac{\frac{3}{2}cos10°-\frac{\sqrt{3}}{2}sin10°}{cos40°}$=$\sqrt{3}$.
故选:A

点评 本题主要考查了“切化弦”思想,同角三角函数关系式和两角和与差的公式运用和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知F是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x-y-1≤0}\\{x-2y+1≥0}\end{array}\right.$,则2x-y的最大值为(  )
A.-$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则$\overrightarrow{AD}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于x的方程$x={log_a}(-{x^2}+2x+a)$(a>0,且a≠1)解的个数是(  )
A.2B.1C.0D.不确定的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合U={1,2,3,4,5,6}M={1,2},N={2,3,4},则M∩(∁UN)=(  )
A.{1}B.{2}C.{1,2,5,6}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若向量$\overrightarrow a=({-2,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$满足条件3$\overrightarrow a+\overrightarrow b$与$\overrightarrow c$共线,则x的值为(  )
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合 A={x|x2<4},B={0,1,2,3},则A∩B=(  )
A.B.{0}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个平面向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=1,|{\overrightarrow a-2\overrightarrow b}|=\sqrt{21}$,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$|{\overrightarrow b}|$=2.

查看答案和解析>>

同步练习册答案