精英家教网 > 高中数学 > 题目详情
19.已知f(x)是定义在R上的偶函数,且满足xf′(x)<0(x≠0),设a=f$({log_{\frac{1}{4}}}7)$,b=f(log23),c=f(0.2-0.6),则a,b,c的大小关系是(  )
A.c<a<bB.c<b<aC.b<c<aD.a<b<c

分析 根据条件判断函数的单调性,即可得到结论.

解答 解:∵xf′(x)<0(x≠0),
∴当x>0时,xf′(x)<0,
∴f(x)在(0,+∞)上为减函数,
∵f(x)是定义在R上的偶函数,
∴a=f$({log_{\frac{1}{4}}}7)$=f(-log47)=f(log47),
∵0.2-0.6=50.6>$\sqrt{5}$>2
由于log47<log49=log23<2<0.2-0.6
∴c<b<a,
故选:B

点评 本题主要考查函数值的大小比较,根据函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得100,60,36,21.6,递减的比例为40%,那么“衰分比”就等于40%,今共有粮a(a>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙分得36石,乙、丁所得之和为75石,则“衰分比”与a的值分别是(  )
A.75%,$\frac{525}{4}$B.25%,$\frac{525}{4}$C.75%,175D.25%,175

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=log2(ax2-2ax+1)定义域为R,则a的取值范围是(  )
A.(-∞,0]B.(0,1)C.[0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U={x∈N|x≤10},集合A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7}求:
(1)A∪B; A∩B
(2)(∁UA)∩(∁UB),A∩B∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx-ax2+(2a-1)x,a>0.
( I)设g(x)=f′(x),求g(x)的单调区间;
( II)若f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某校1200名学生中,O型血有450人,A型血有a人,B型血有b人,AB型血有c人,且450,a,b,c成等差数列,为了研究血型与血虚的关系,从中抽取容量为48的样本,按照分层抽样的方法抽取样本,则要抽取的A型血的人数为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{k}{x},x≥2}\\{{{({x-1})}^2},x<2}\end{array}}$,若方程f(x)=$\frac{1}{2}$有三个不同的实根,则实数k的范围是(  )
A.(1,2]B.[1,+∞)C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ)(0<φ<π)的图象向左平移$\frac{π}{4}$个单位后,得到的函数的图象关于点$(\frac{π}{2},0)$对称,则函数$g(x)=\frac{1}{2}sin(2x+φ)$在$[-\frac{π}{2},\frac{π}{6}]$上的最小值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F1,F2是椭圆$\frac{x^2}{25}+\frac{y^2}{9}$=1的两个焦点,过F1作直线与椭圆相交于M,N两点,则△MNF2的周长为20.

查看答案和解析>>

同步练习册答案