精英家教网 > 高中数学 > 题目详情
10.已知f(x)=sin2x+$\sqrt{3}$cos2x(x∈R),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{12}$

分析 化简函数,利用函数$y=f({x+φ})=2sin({2x+2φ+\frac{π}{3}})$的图象关于直线x=0对称,函数为偶函数,可得结论.

解答 解:因为$f(x)=sin2x+\sqrt{3}cos2x=2sin({2x+\frac{π}{3}})$,函数$y=f({x+φ})=2sin({2x+2φ+\frac{π}{3}})$的图象关于直线x=0对称,函数为偶函数,∴$φ=\frac{π}{12}$,
故选D.

点评 本题考查正弦函数的对称性,考查学生的计算能力,正确化简函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)设函数g(x)=f(x)-b,若a=1,求函数g(x)在(1,g(1))处的切线方程;
(2)若函数f(x)在(0,2)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,
(1)求函数f(x)的解析式;
(2)如何由函数y=sinx的图象通过相应的平移与伸缩变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lg(|3x+2|+|1-2x|+a).
(1)当a=-5时,求函数f(x)的定义域;
(2)若函数f(x)的值域为R,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知c>1,则不等式${x}^{2}-(c+\frac{1}{c})x+1>0$的解集为(  )
A.$\left\{x|\frac{1}{c}<x<c\right\}$B.$\left\{x|x>\frac{1}{c},或x>c\right\}$C.$\left\{x|x<\frac{1}{c},或x>c\right\}$D.$\left\{x|c<x<\frac{1}{c}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=sin(x+\frac{π}{4})cos(x+\frac{π}{4})+{cos^2}x-{log_2}|x|-\frac{1}{2}$的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.f(x)=ax2+bx+c(a≠0).
(Ⅰ)f(-1)=0且任意x∈R,x≤f(x)≤$\frac{{{x^2}+1}}{2}$,求f(x);
(Ⅱ)若|f(x)|<1的解集(-1,3),求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.倾斜角$\frac{π}{4}$的直线l过抛物线y2=4x焦点,且与抛物线相交于A、B两点.
(1)求直线l的方程.
(2)求线段AB长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若α为第二象限角,则$\frac{{{{[{sin({180°-α})+cos({α-360°})}]}^2}}}{{tan({180°+α})}}$=$\frac{cosα(1+2sinαcosα)}{sinα}$.

查看答案和解析>>

同步练习册答案